

Measuring Valuation of Liquidity with Penalized Withdrawals

by David Coyne, Itzik Fadlon and Tommaso Porzio

Discussion by Taha Choukhmane
MIT Sloan

NBER Summer Institute Household Finance & Aging
July 22, 2021

Motivation

- Starting point: a simple and clever idea!

Observe HHs paying penalty to access ret. savings early

=

Their **valuation of liquidity > penalty**

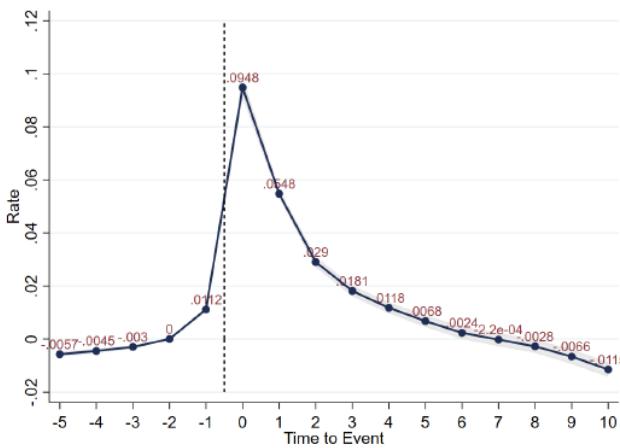
- Simple non-parametric tool to measure variations in liquidity needs across HHs, time and space.
- Population: tax-filers w/ ret. sav. = good candidates for wealthy hand-to-mouth in HANK models

Results & Connection to Literature

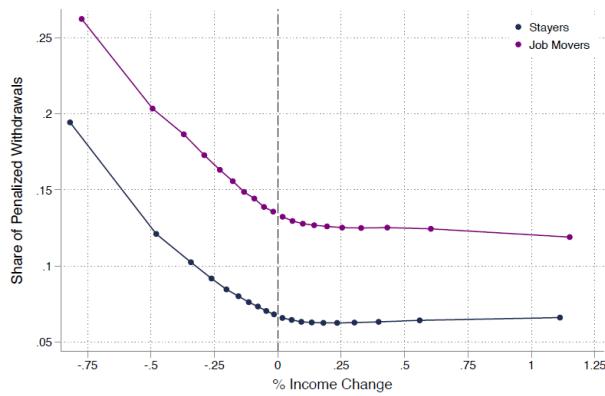
2 sets of results:

1. Hhs use penalized withdrawals for self-insurance

Consistent with the literature on retirement leakage:


- **Cross-section:** early withdrawals \nearrow following life events (separation, income shock, divorce, etc.) [Amromin and Smith '03](#) ; [Argento, Bryant and Sabelhaus '15](#) ; [Goodman, Mackie, Mortenson, Schramm '21](#)
- **Time series:** early withdrawals \nearrow aggregate shocks (great recession)
[Argento, Bryant and Sabelhaus '15](#)

Suggestion: acknowledge the leakage literature/discuss what drive (small) differences


Context & Connection to Literature

This paper

(a) Unemployment

Job separation/ unemployment

Income changes

Goodman, Mackie, Mortenson and Schramm (*forthcoming*)

Figure 7: Change in leakage probability around job separation

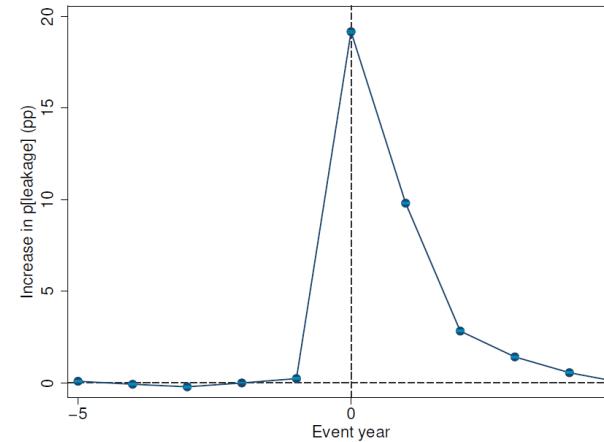
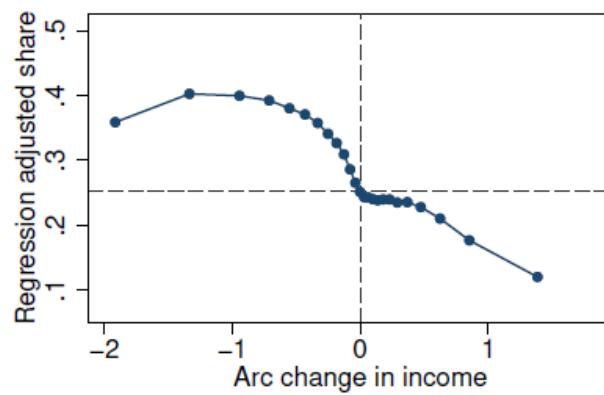



Figure 9: Job separation:

Full leak

Results & Connection to Literature

2 sets of results:

- 1. Hhs use penalized withdrawals for self-insurance**
- 2. Wide spatial variation in liquidity needs**

- Spatial distribution broadly similar to Keys, Mahoney and Yang '21 (more liquidity needs and financial distress in South vs Upper Midwest)

BUT ≠ population: tax-filers w/ ret. sav.

Place effect explain more of the variation in penalized withdrawals (30%) than debt-in-collection or CC non-payment (~10%)

Theoretical Framework

$$\Pr\left(\frac{u'(c_{i,z,t+1})}{u'(c_{i,z,t})} > 1 + \tau\right) = \Pr(\text{penalized withdrawal}_{i,z,t}) = \alpha_i + \Gamma_{z(i,t)} + x_{i,t} + \varepsilon_{i,t}$$

Theoretical Framework

$$\Pr\left(\frac{u'(c_{i,z,t+1})}{u'(c_{i,z,t})} > 1 + \tau\right) = \mathbf{Pr}(\text{penalized withdrawal}_{i,z,t}) = \alpha_i + \Gamma_{z(i,t)} + x_{i,t} + \varepsilon_{i,t}$$

- 1. Measurement:** of penalized withdrawal includes other (penalty-free) distributions

Measurement: many non-penalized withdrawals are included!

Data: 1099-R form distributions w/ codes 1, J and S :

Includes: penalized withdrawals from a DC plan (what the authors want to measure)

Measurement: many non-penalized withdrawals are included!

Data: 1099-R form distributions w/ codes 1, J and S :

Includes: penalized withdrawals from a DC plan (what the authors want to measure)

+ Cash-out from DB plan (may be important given study sample 45-59 btw 1999-2018):

- Hurd and Panis '06: 11% of DB plans cashed out at separation in HRS 1992-2000

Measurement: many non-penalized withdrawals are included!

Data: 1099-R form distributions w/ codes 1, J and S :

Includes: penalized withdrawals from a DC plan (what the authors want to measure)

- + Cash-out from DB plan (may be important given study sample 45-59 btw 1999-2018):
 - Hurd and Panis '06: 11% of DB plans cashed out at separation in HRS 1992-2000
- + Indirect rollovers: withdraw money but rollover within 60 days into an IRA
- + Several types hardship withdrawals are included:

Distribution Codes	Explanations
1—Early distribution, no known exception.	Use Code 1 only if the participant has not reached age 59½, and you do not know if any of the exceptions under Code 2, 3, or 4 apply. However, use Code 1 even if the distribution is made for medical expenses, health insurance premiums, qualified higher education expenses, a first-time home purchase, a qualified reservist distribution, or a qualified birth or adoption distribution under section 72(t)(2)(B), (D), (E), (F), (G), or (H). Code 1 must also be used even if a taxpayer

Measurement: many non-penalized withdrawals are included!

Data: 1099-R form distributions w/ codes 1, J and S :

Includes: penalized withdrawals from a DC plan (what the authors want to measure)

+ Cash-out from DB plan (may be important given study sample 45-59 btw 1999-2018):

- Hurd and Panis '06: 11% of DB plans cashed out at separation in HRS 1992-2000

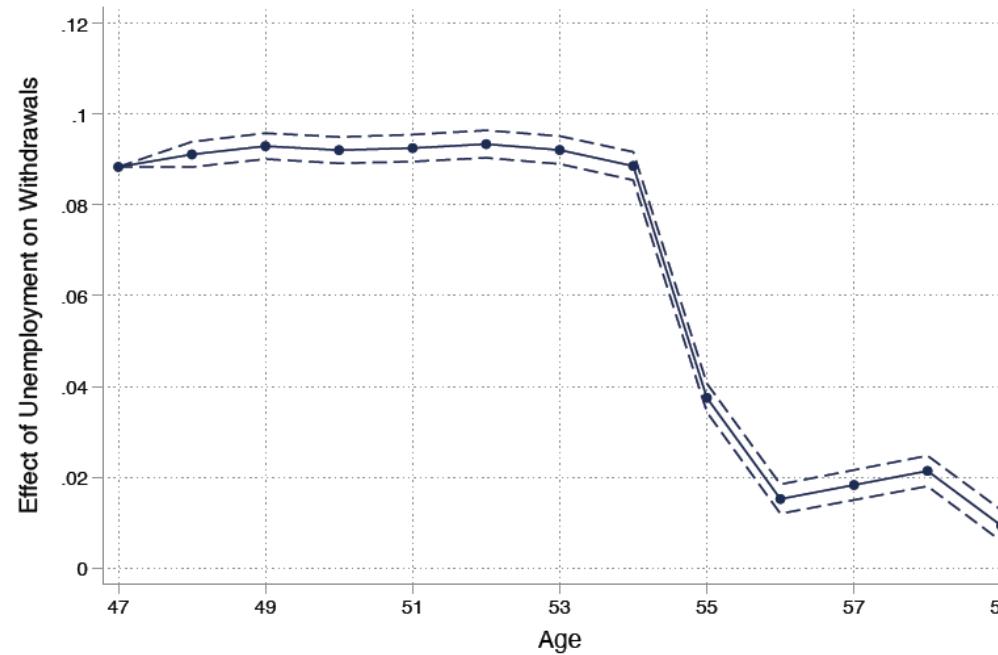
+ Indirect rollovers: withdraw money but rollover within 60 days into an IRA

+ Several types hardship withdrawals are included:

Distribution Codes	Explanations
1—Early distribution, no known exception.	Use Code 1 only if the participant has not reached age 59½, and you do not know if any of the exceptions under Code 2, 3, or 4 apply. However, use Code 1 even if the distribution is made for medical expenses, health insurance premiums, qualified higher education expenses, a first-time home purchase, a qualified reservist distribution, or a qualified birth or adoption distribution under section 72(t)(2)(B), (D), (E), (F), (G), or (H). Code 1 must also be used even if a taxpayer

Good news! Can fix this w/ the data available to authors. (Bee and Mitchell '17 and Goodman et al '21) identify DC from DB, can use form 5329 for hardship exception

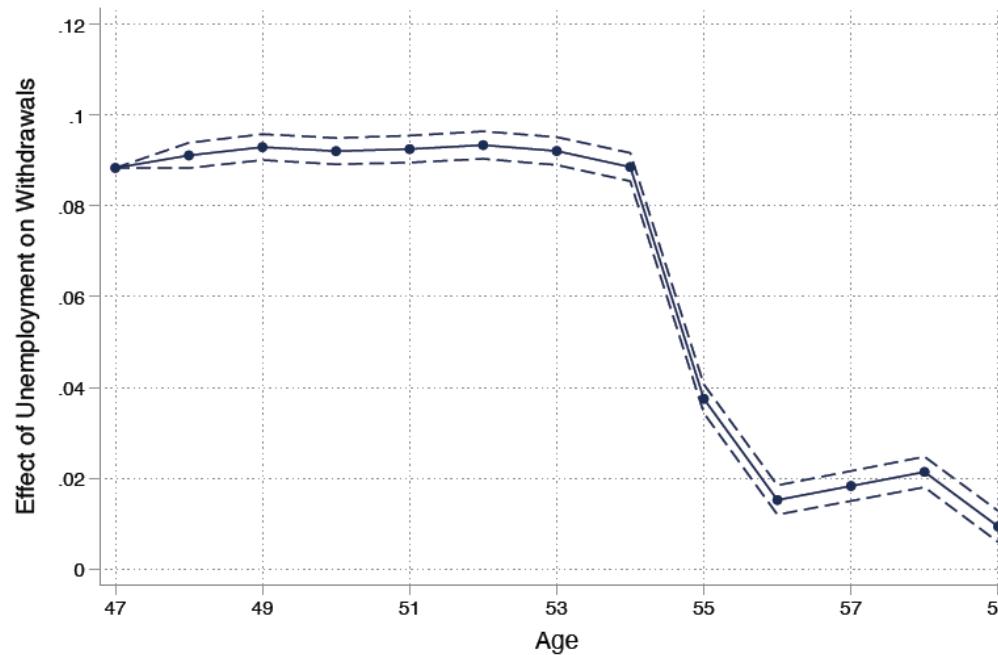
Theoretical Framework


$$\Pr\left(\frac{u'(c_{i,z,t+1})}{u'(c_{i,z,t})} > 1 + \tau\right) = \Pr(\text{penalized withdrawal}_{i,z,t}) = \alpha_i + \Gamma_{z(i,t)} + x_{i,t} + \varepsilon_{i,t}$$

1. Measurement: of penalized withdrawal includes other (penalty-free) distributions
2. **“Price” of liquidity:** varies across households, time, employers and space

“Price” of Liquidity I: Hardship Withdrawals

Hardship withdrawals => availability of exception to the 10% penalty
varies across hhs, time and space


- Ex 1. cross section:

“Price” of Liquidity I: Hardship Withdrawals

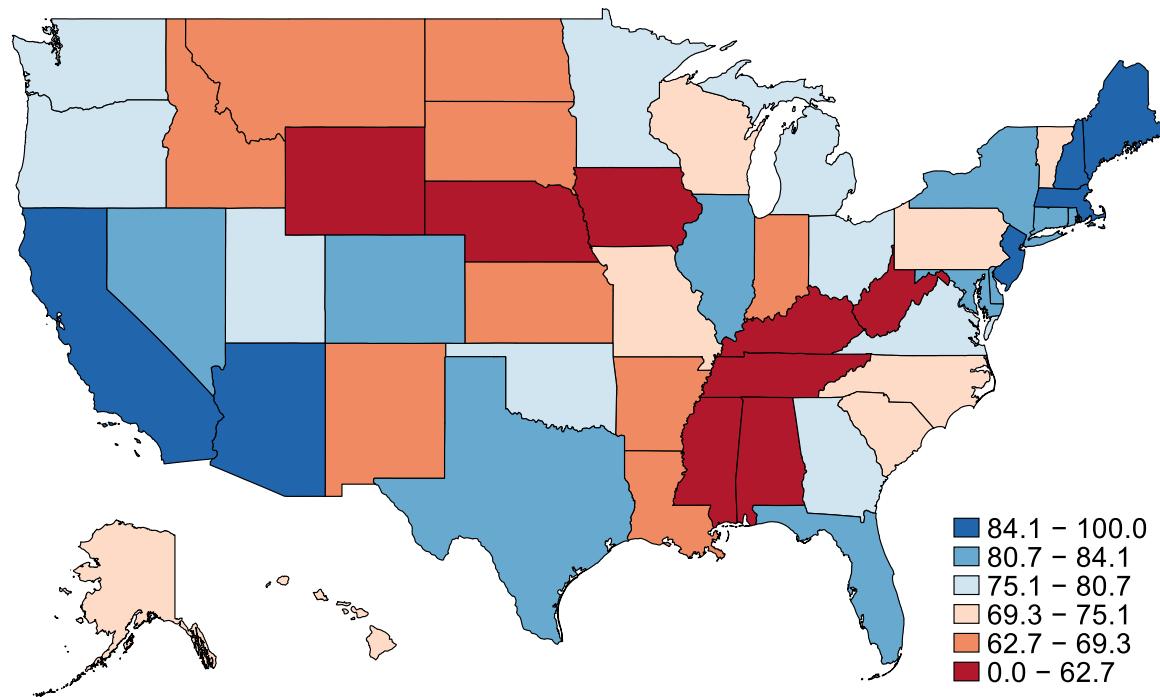
Hardship withdrawals => availability of exception to the 10% penalty
varies across hhs, time and space

- Ex 1. cross section:

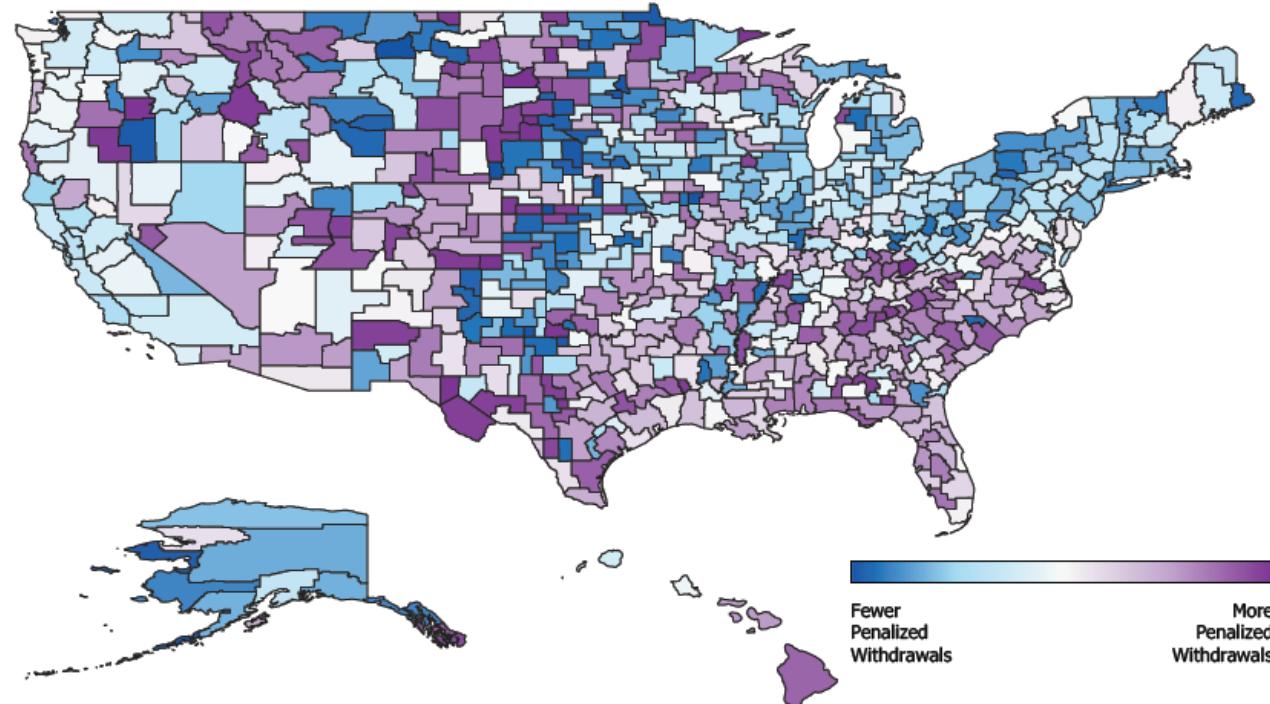
No penalty for withdrawal
after separation if older
than 55y

- Ex 2. movers design:

=> “Empty nesters” move to new place after kid goes the college
=> Access an alternative to penalized withdrawals (hardship for higher educ. expenses)
↓ price to access retirement liquidity correlated with move (Δ_i in place effect)


“Price” of Liquidity II: 401(k) Loans

~86% of participants in 401(k) 403(b) plans have a loans option:
Liquidity need => borrow from yourself + no tax penalty if you repay eventually


“Price” of Liquidity II: 401(k) Loans

~86% of participants in 401(k) 403(b) plans have a loans option:
Liquidity need => borrow from yourself + no tax penalty if you repay eventually

% of plans w/ evidence of loan activity in 2012

(b) Location Fixed Effects

Data: Form 5500 filings for 2012 (4001(k) and 403(b) plans w/ more than 100 participants).
Geography based on the mailing address of the plan sponsor.

“Price” of Liquidity III: Taxes

Federal Income Tax

Income shocks + Financial crisis

↓ marginal tax rate ($\downarrow \tau$) => ↑ withdrawals

Paper: rule out tax concern b/c withdrawal do not ↓ following positive income shocks.

BUT positive income shock $\neq \Delta$ marginal tax rate

If withdrawal don't respond to prices (tax) => raises questions about framework validity!

Suggestion: zoom in hhs who change tax brackets (marginal tax rate is endogenous too). Compare Roth vs traditional withdrawals.

“Price” of Liquidity III: Taxes

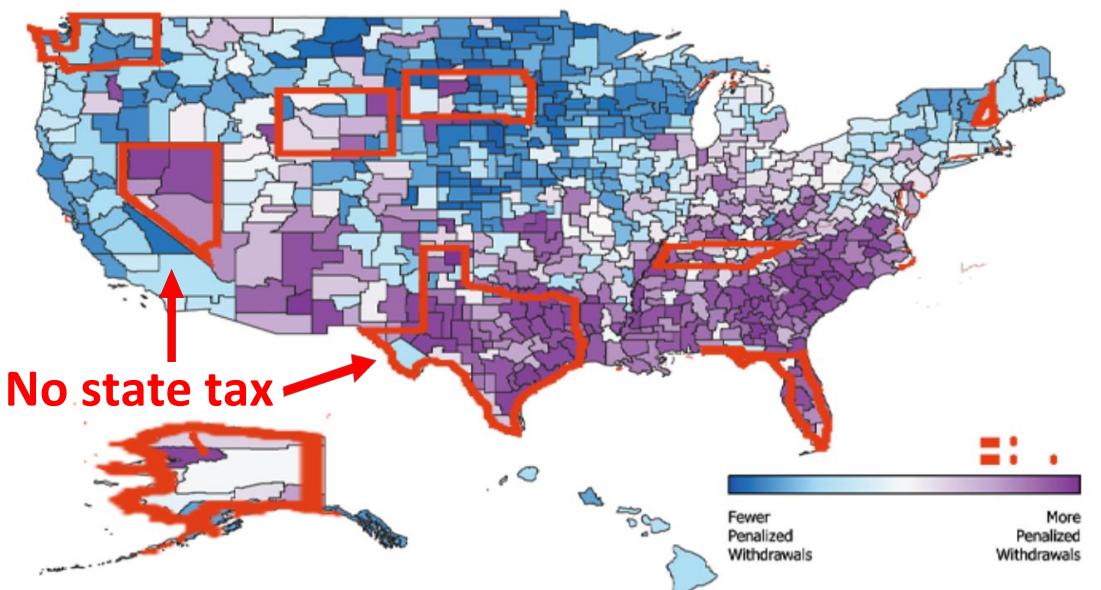
Federal Income Tax

Income shocks + Financial crisis

↓ marginal tax rate ($\downarrow \tau$) => ↑ withdrawals

Paper: rule out tax concern b/c withdrawal do not ↓ following positive income shocks.

BUT positive income shock $\neq \Delta$ marginal tax rate


If withdrawal don't respond to prices (tax) => raises questions about framework validity!

Suggestion: zoom in hhs who change tax brackets (marginal tax rate is endogenous too). Compare Roth vs traditional withdrawals.

State Income Tax

Paper: controlling for top marginal state income tax has a small (but non-negligible) effect.

(a) Overall Variation

Suggestion: top rate is too coarse. Look at hh level marginal rate + check for anticipation effects

Theoretical Framework

$$\Pr\left(\frac{u'(c_{i,z,t+1})}{u'(c_{i,z,t})} > 1 + \tau\right) = \Pr(\text{penalized withdrawal}_{i,z,t}) = \alpha_i + \Gamma_{z(i,t)} + x_{i,t} + \varepsilon_{i,t}$$

1. Measurement: of penalized withdrawal includes other (penalty-free) distributions
2. "Price" of liquidity: varies across households, time, employers and space
3. **Revealed preferences:** may fail b/c of default rules and inertia at separation

Inertia & Default Behavior I: Auto-cash-out

Fist issue: automatic cash-out at termination

- Employers are allowed to send a cash distribution for separating employees with small balances (unless employee makes an active decision).
- Asset thresholds for automatic cash-out during sample:
 - Pre-2005: automatic cash-out <\$5,000
 - => post-2005: lowered to <\$1,000 and rollover into an IRA <\$5,000
- Potentially large effect: 20% of penalized withdrawal in the sample are <\$1,000 and 50% are <\$5,000

Inertia & Default Behavior II: Loan defaults

Fist issue: automatic cash-out at termination

Second issue: 401k loan defaults at termination

Balloon payment at termination => path of least resistance: default!
=> creates a penalized distribution at separation.

Potentially a large effect. From Lu, Mitchell, Utkus and Young '17:

- 20% of 401k employees have outstanding loan
 - 86% of employees w/ outstanding 401k loan default
- => back-of-the-envelope calculation: 17% of terminating default

Inertia & Default Behavior

Challenge for the revealed preference approach:

A significant share of withdrawals at separation could be driven by **default options** rather than **changes in hh liquidity pref.**

Matters for both (i) effect of job loss in the cross-section & (ii) elasticity to unemployment in the great recession

Suggestion: restrict to penalized withdrawals which reflect an active decision!

Theoretical Framework

$$\Pr\left(\frac{u'(c_{i,z,t+1})}{u'(c_{i,z,t})} > 1 + \tau\right) = \Pr(\text{penalized withdrawal}_{i,z,t}) = \alpha_i + \Gamma_{z(i,t)} + x_{i,t} + \varepsilon_{i,t}$$

1. Measurement: of penalized withdrawal includes other (penalty-free) distributions
2. “Price” of liquidity: varies across households, time, employers and space
3. Revealed preferences: may fail b/c of default rules and inertia at separation
- 4. Person & place FE:** additive separability is a strong assumption

Person vs Place Effects

Key assumption: person and place effects are additively separable.

⇒ **Person effect may capture past place effect:**

- Authors preferred interpretation of place effects: Δ in credit supply
- Prob: can keep credit access after moving from high to low credit supply place
=> person effect will capture origin place effect!

Suggestion: check for asymmetric effect. Prediction of supply model: stronger effect for negative moves (from low to high place FE). [Keys, Mahoney and Yang '21](#)

Person vs Place Effects

Key assumption: person and place effects are additively separable.

⇒ Person effect may capture past place effect:

- Authors preferred interpretation of place effects: Δ in credit supply
- Prob: can keep credit access after moving from high to low credit supply place
=> person effect will capture origin place effect!

Suggestion: check for asymmetric effect. Prediction of supply model: stronger effect for negative moves (from low to high place FE). [Keys, Mahoney and Yang '21](#)

⇒ Interaction between person and place:

- Additive separability => anything about place that \nearrow withdrawals \nearrow them by constant proportion \forall hhs
- Ex. Black and white hhs may have different effect to moving into/out of high % black locations
- Relatedly: check for pre-trend interacted w/ hhs characteristics

Person vs Place Effects

Key assumption: person and place effects are additively separable.

⇒ Person effect may capture past place effect:

- Authors preferred interpretation of place effects: Δ in credit supply
- Prob: can keep credit access after moving from high to low credit supply place
=> person effect will capture origin place effect!

Suggestion: check for asymmetric effect. Prediction of supply model: stronger effect for negative moves (from low to high place FE). [Keys, Mahoney and Yang '21](#)

⇒ Interaction between person and place:

- Additive separability => anything about place that \uparrow withdrawals \uparrow them by constant proportion \forall hhs
- Ex. Black and white hhs may have different effect to moving into/out of high % black locations
- Relatedly: check for pre-trend interacted w/ hhs characteristics

⇒ Endogenous selection into who can take penalized withdrawals:

$$\Pr(\text{penalized withdrawal}_{i,z,t}) = (\alpha_i + \Gamma_{z(i,t)} + x_{i,t} + \varepsilon_{i,t}) \times \mathbb{I}(\text{ret. savings} > 0)$$

- 1/3 of withdrawals $\geq 100\%$ IRA balance => limits ability to withdraw in future
- Person and place effect interact (non-linearly) with history of past contributions and withdrawals (and past place and person effects)

Conclusion

- Great paper: clever use of revealed preferences to study liquidity needs across hhs, space and time
- Current measurement challenges can be addressed w/ data available to authors
- Encourage the authors to decompose variation coming from liquidity preferences vs prices vs inertia