

Intra-household Credit Spillovers

by Feng Liu and Jialan Wang

Discussion by Taha Choukhmane
MIT Sloan & NBER

This Paper

Data: novel dataset combining (for the first time):

Bankruptcy filings + credit data + household links from financial connections

Event: credit outcomes before/after removal of ones' relative bankruptcy flag

Results:

- Relatives' credit scores and credit capacity ↗
- Credit card utilization ↓ & mortgages ↗

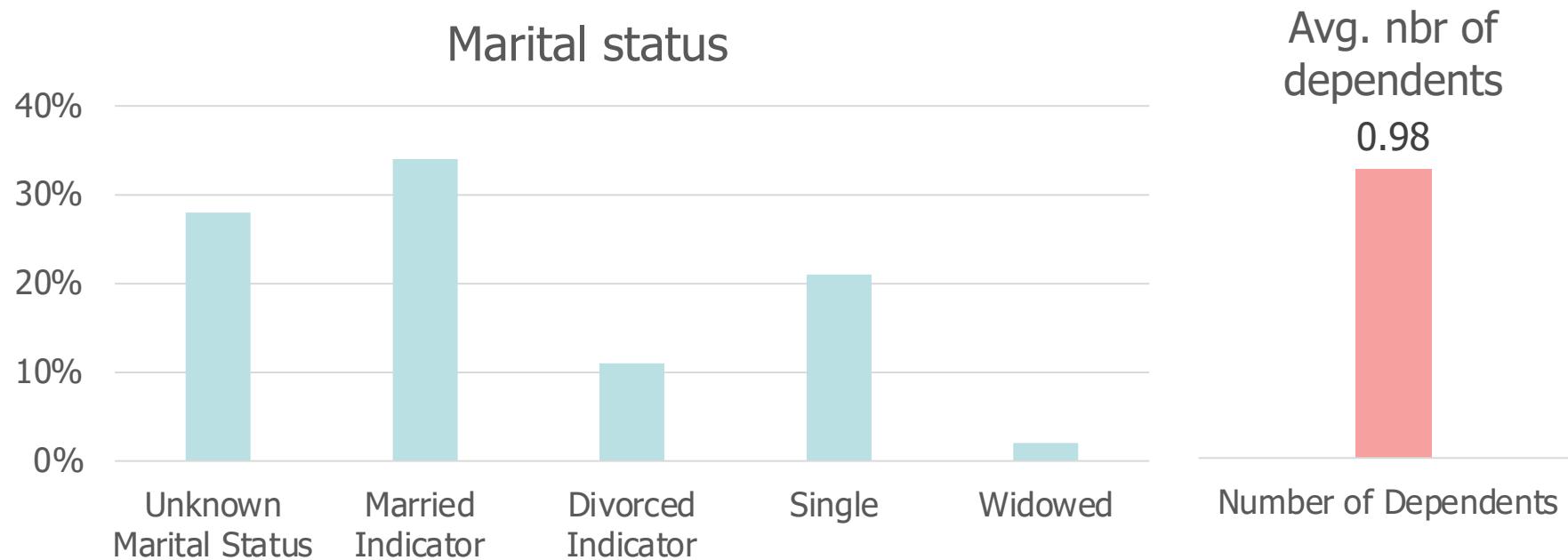
Fantastic project, important data innovation and addresses a first-order question (total household response)

Part I

Measuring Household Linkages in Credit Bureau Data

Further validating the linkages

- Linking approach is very simple (i.e., gaps $>18y$ vs $<18y$) & yet successful!
- Build confidence by validating linkages using information from the bankruptcy filings? Useful to get a sense of error rate.



The Dynamic of Financial Linkages

Pairs linked if there is a financial link at any point between 2001-2023

The evolution of linkages is potentially very informative!

The Dynamic of Financial Linkages

Pairs linked if there is a financial link at any point between 2001-2023

The evolution of linkages is potentially very informative!

=> Do parents add their child as an authorized user as a form of financial support?

Remove these linkages once filler is out of financial distress?

The Dynamic of Financial Linkages

Pairs linked if there is a financial link at any point between 2001-2023

The evolution of linkages is potentially very informative!

=> Do parents add their child as an authorized user as a form of financial support?

Remove these linkages once filler is out of financial distress?

=> Heterogeneity by dynamic pattern of "likely-partner" linkage:

(i)- continuously-linked pre- and post-filing

(ii)- new linkage post-filing (i.e. 22% of fillers are linked with 2+ "likely partners")

Collective model w/ commitment would predict bankruptcy affects the bargaining weights in (ii) but not (i)

Part II

Measuring Credit Spillovers

Research Design

$$y_{i,t} = \gamma_t + \gamma_c + r_{i,t} + \sum_{\tau=-24}^{\tau=60} \delta_\tau \cdot I\{r_{i,t} = \tau\}$$

Challenge: identify effect of flag removal δ_τ separately from

- γ_t : **calendar month** (i.e., economic conditions in June 2019 \neq April 2020)
- γ_c : **cohort** (i.e., those who filed in 2006 \neq 2009)
- $r_{i,t}$: **time since bankruptcy** (i.e., financial health improves post-bankruptcy)

Problem: these three variables are collinear $r_{i,t} = \gamma_t - \gamma_c$

Research Design

$$y_{i,t} = \gamma_t + \gamma_c + \alpha \cdot r_{i,t} + \sum_{\tau=-24}^{\tau=60} \delta_\tau \cdot I\{r_{i,t} = \tau\}$$

Challenge: identify effect of flag removal δ_τ separately from

- γ_t : **calendar month** (i.e., economic conditions in June 2019 \neq April 2020)
- γ_c : **cohort** (i.e., those who filed in 2006 \neq 2009)
- $r_{i,t}$: **time since bankruptcy** (i.e., financial health improves post-bankruptcy)

Problem: these three variables are collinear $r_{i,t} = \gamma_t - \gamma_c$

Solution: assume $r_{i,t}$ grows linearly (i.e., violation of parallel trend grows linearly)

Research Design

$$y_{i,t} = \gamma_t + \gamma_c + \alpha \cdot r_{i,t} + \sum_{\tau=-24}^{\tau=60} \delta_{\tau} \cdot I\{r_{i,t} = \tau\}$$

Three key threats to identification:

- 1). Linear trend extrapolation
- 2). Heterogeneous dynamic effects across cohorts
- 3). Heterogeneous dynamic effects across periods

Research Design

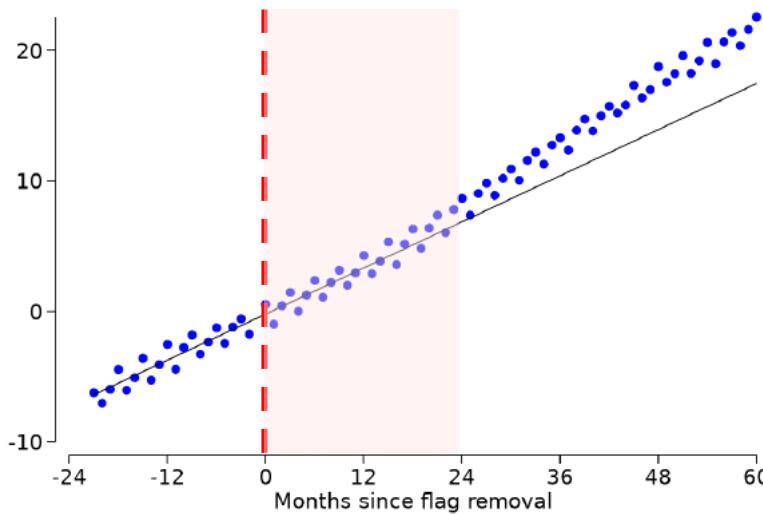
$$y_{i,t} = \gamma_t + \gamma_c + \alpha \cdot r_{i,t} + \sum_{\tau=-24}^{\tau=60} \delta_{\tau} \cdot I\{r_{i,t} = \tau\}$$

Three key threats to identification:

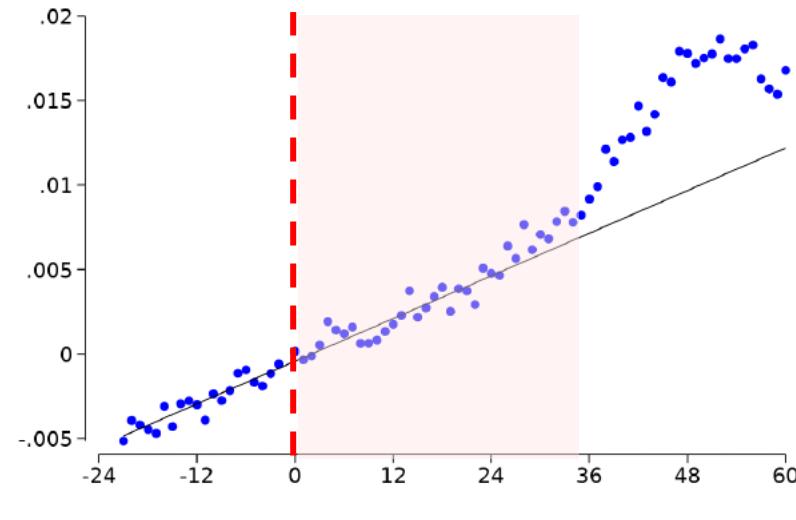
- 1). Linear trend extrapolation**
- 2). Heterogeneous dynamic effects across cohorts
- 3). Heterogeneous dynamic effects across periods

Issue 1: Linear Trend Extrapolation

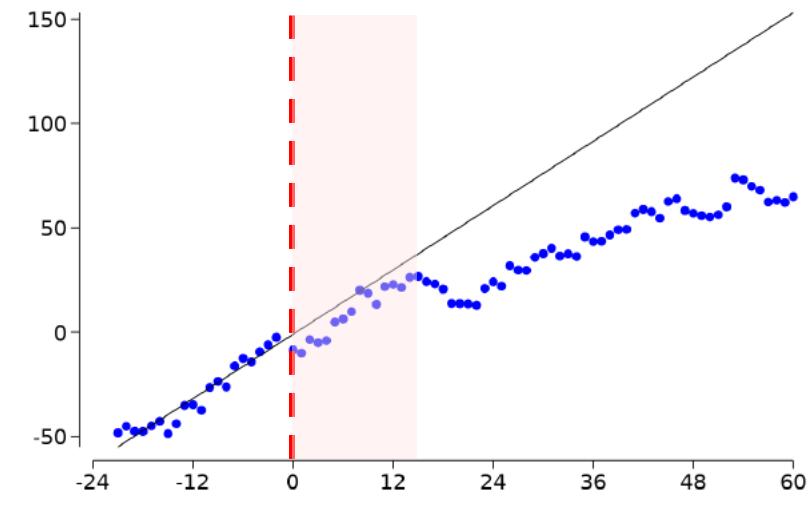
Credit score (all)



Credit card inquiries



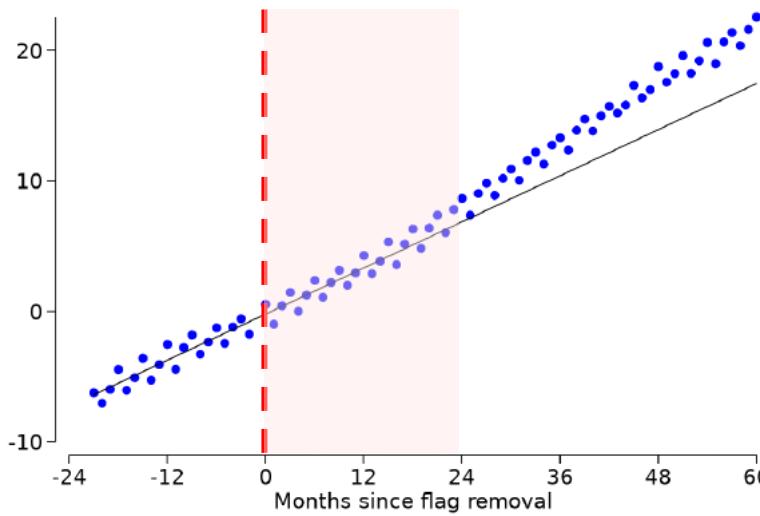
Credit card balance



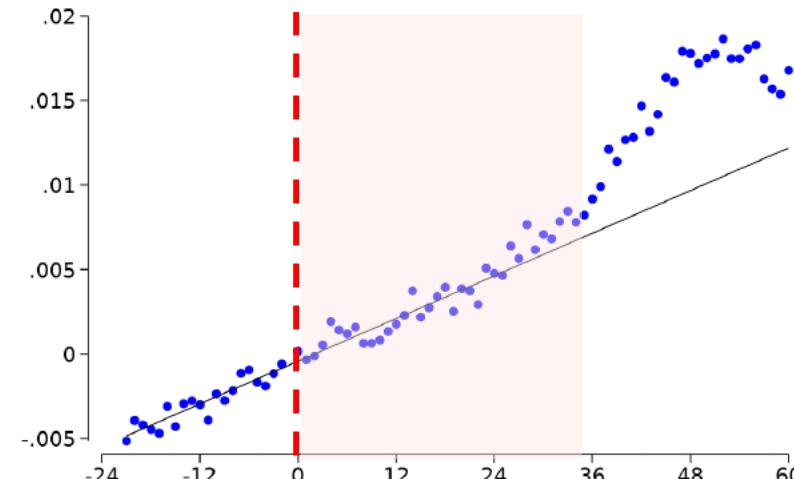
Delayed responses: deviation from linear trend \sim 12 to 36 months after flag removal!

Issue 1: Linear Trend Extrapolation

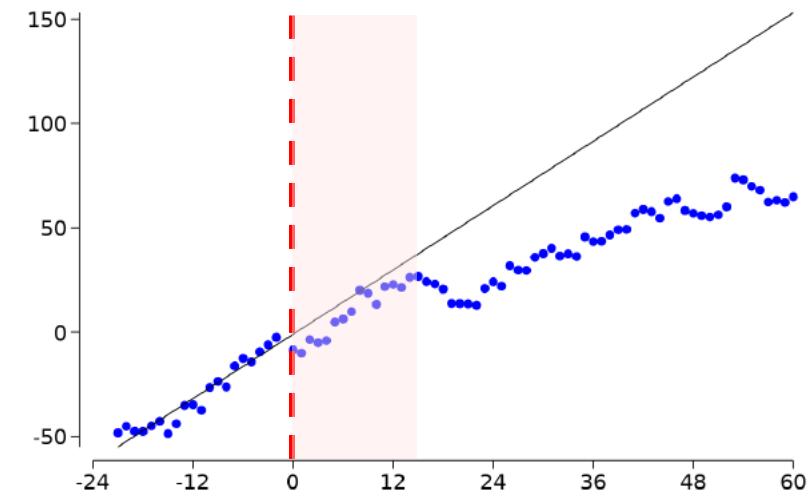
Credit score (all)



Credit card inquiries



Credit card balance

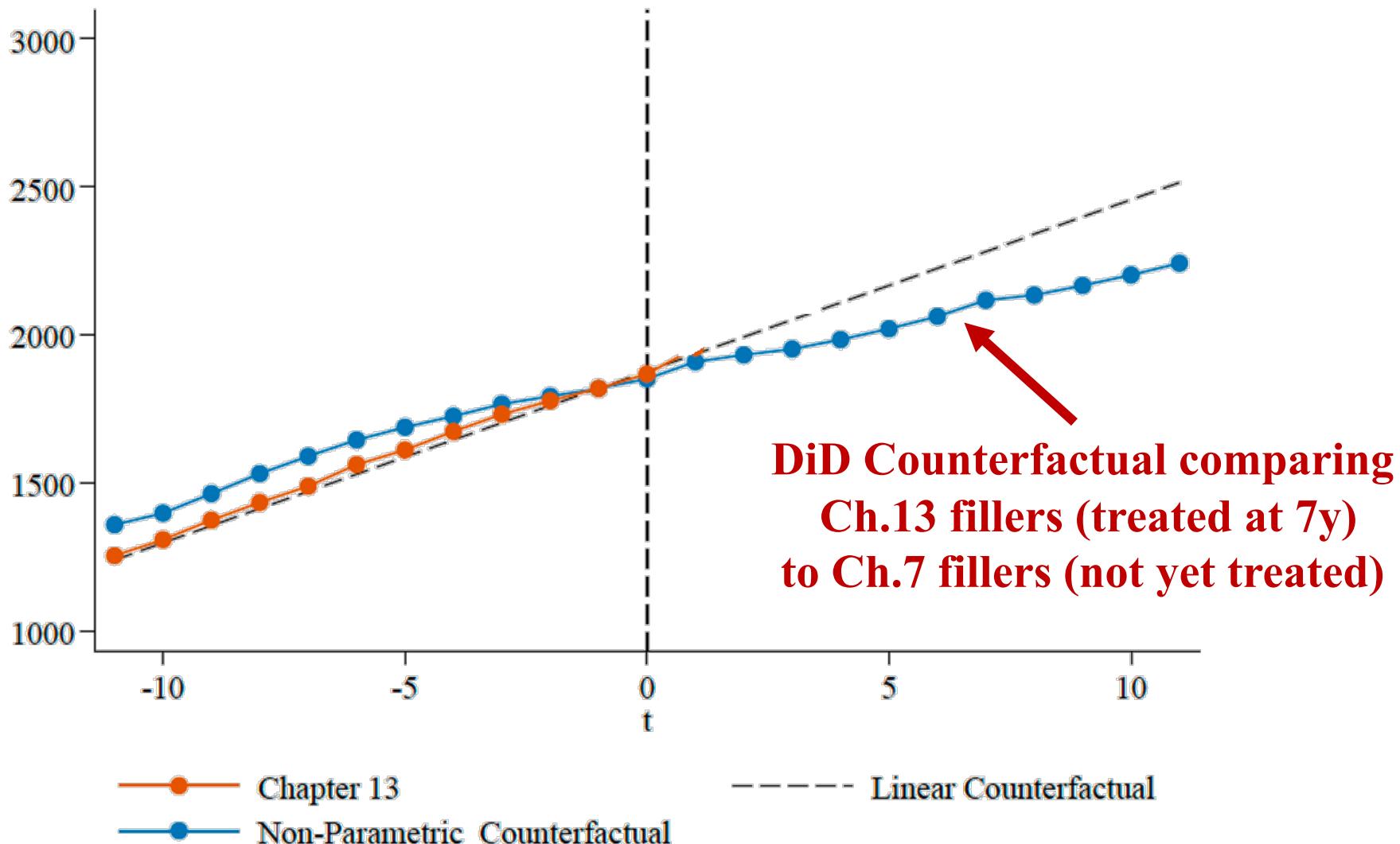


Delayed responses: deviation from linear trend \sim 12 to 36 months after flag removal!

- Possibility 1: it takes time for effect to spillover to relatives
- Possibility 2: linear trend extrapolation is less and less reliable over time

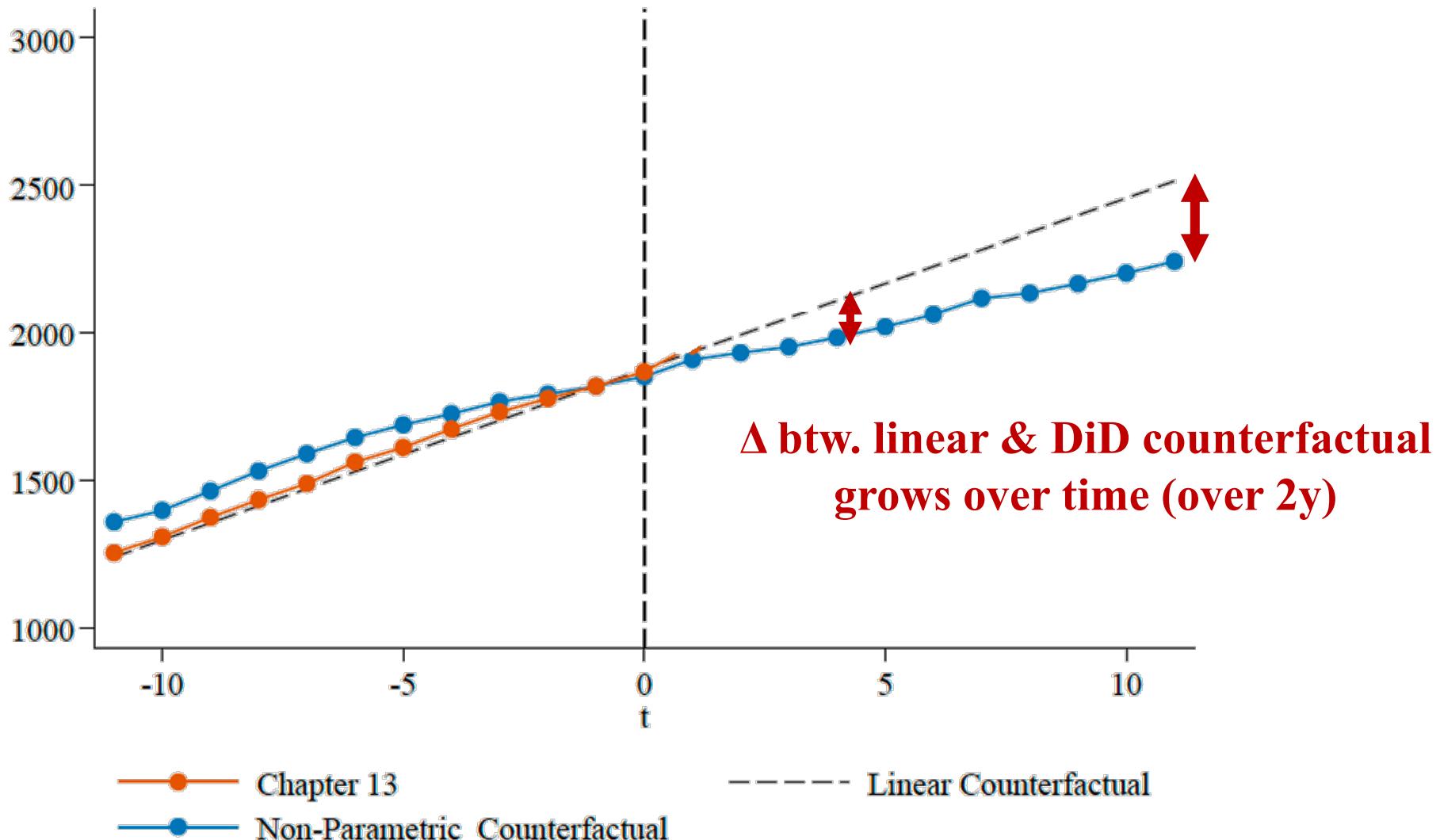
Alternative approach: Dobbie et al, JF'20

(B) Credit Card Balances



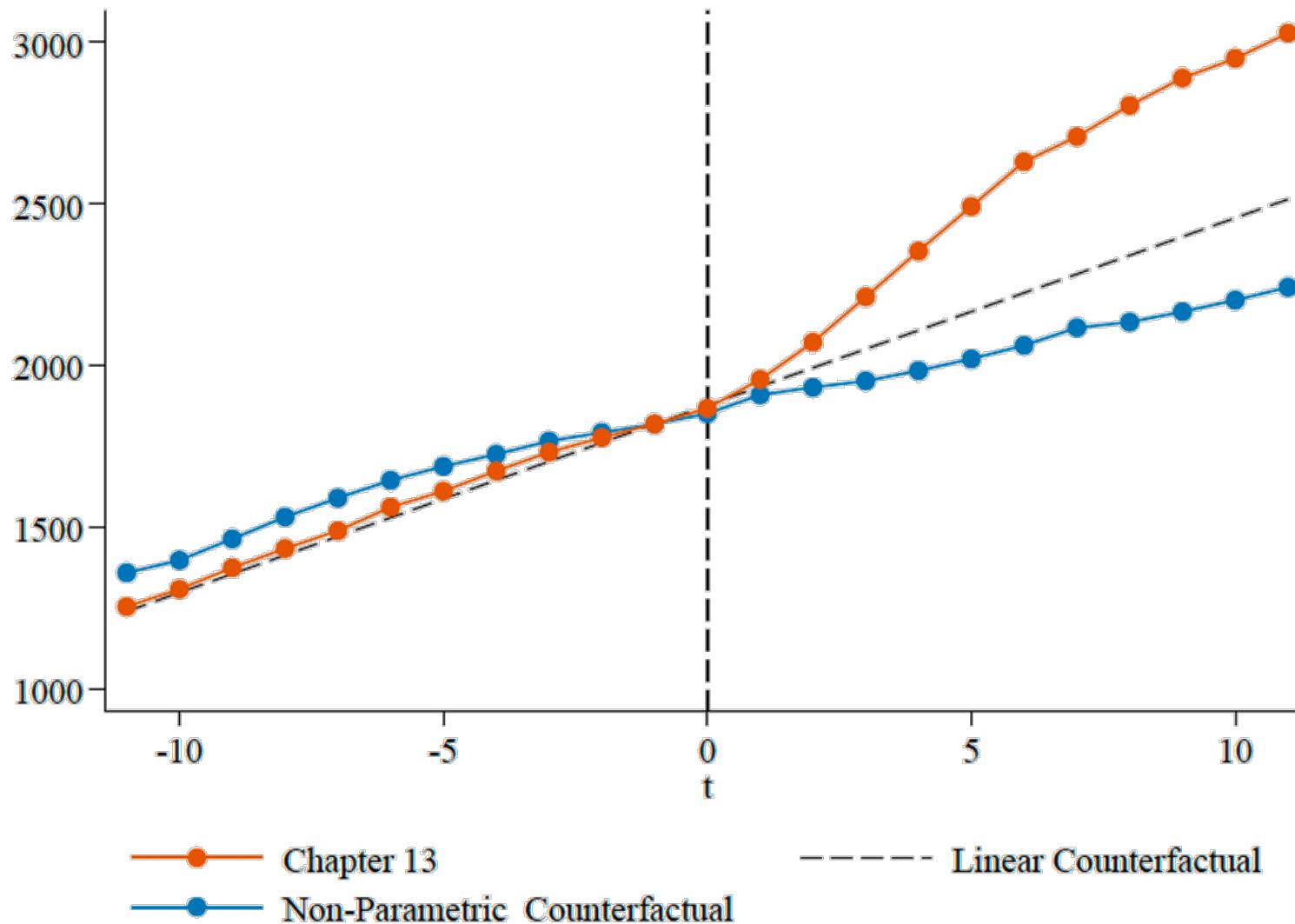
Alternative approach: Dobbie et al, JF'20

(B) Credit Card Balances



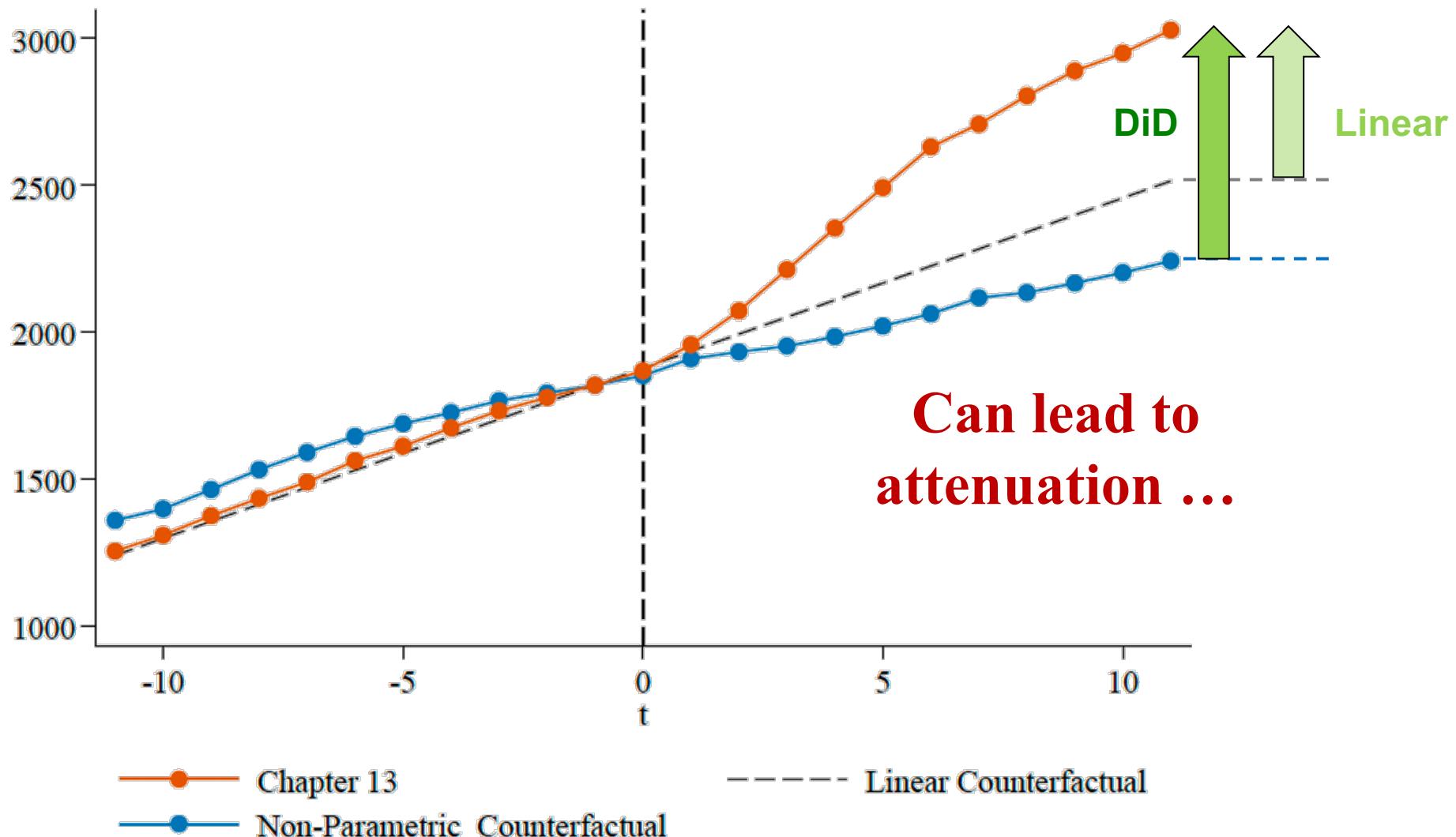
Alternative approach: Dobbie et al, JF'20

(B) Credit Card Balances



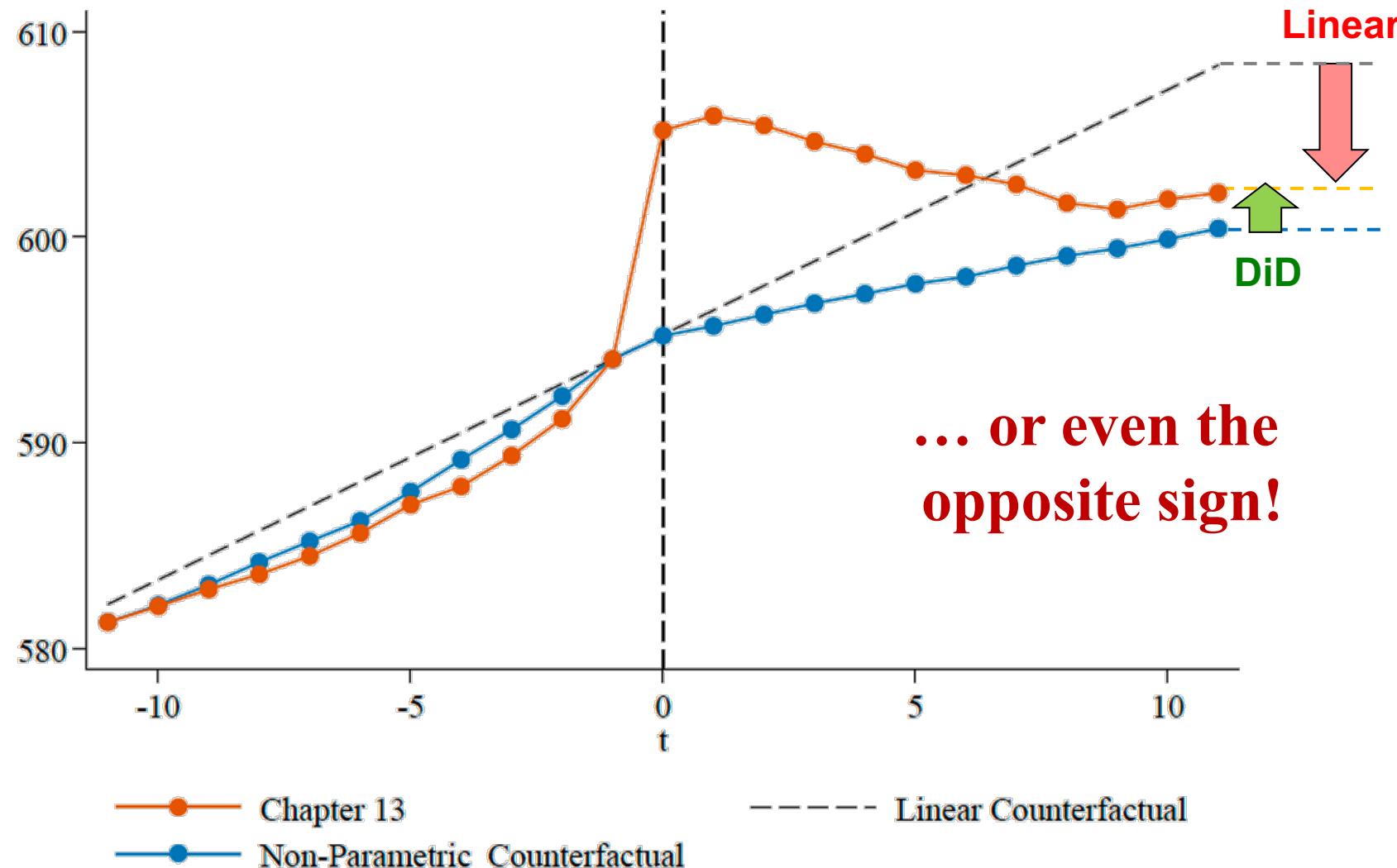
Alternative approach: Dobbie et al, JF'20

(B) Credit Card Balances



Alternative approach: Dobbie et al, JF'20

(A) Credit Score



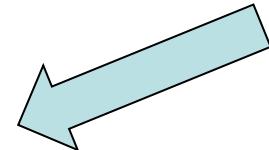
What to do?

*Because post-event path of the confound cannot be learned from the data, it's **important to motivate extrapolation assumption on economic grounds.***

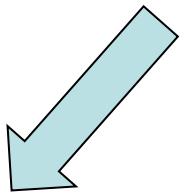
“I urge researchers to use context-specific economic knowledge to inform the discussion and analysis of possible violations of parallel trends” Roth AER:i ‘20

What to do?

Source of pre-trend
(i.e., confound)



Known
(i.e., plausible candidates)



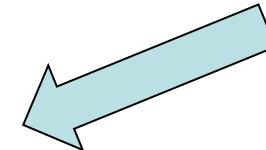
Observed &
unrelated to
treatment

**Control for
covariate**

(e.g., age effect)

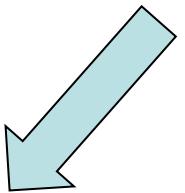
What to do?

Source of pre-trend
(i.e., confound)



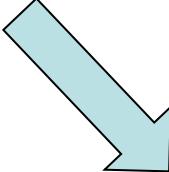
Known

(i.e., plausible candidates)



Observed &
unrelated to
treatment

**Control for
covariate**
(e.g., age effect)



Unobserved or
directly related to
treatment

**2SLS for noisy proxy
affected by confound
but not by treatment**

Freyaldenhoven, Hansen,
Shapiro, AER '19

What to do?

Source of pre-trend
(i.e., confound)

Known

(i.e., plausible candidates)

Unknown

(i.e., no obvious economic mechanism)

Observed &
unrelated to
treatment

**Control for
covariate**
(e.g., age effect)

Unobserved or
directly related to
treatment

**2SLS for noisy proxy
affected by confound
but not by treatment**

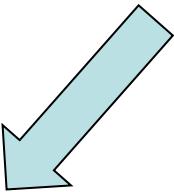
Freyaldenhoven, Hansen,
Shapiro, AER '19

What to do?

Source of pre-trend
(i.e., confound)

Known

(i.e., plausible candidates)



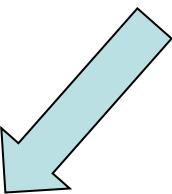
Observed &
unrelated to
treatment

**Control for
covariate**

(e.g., age effect)

Unknown

(i.e., no obvious economic mechanism)



Learn from the
data (i.e. construct
control group)

**Synthetic controls
or Dobbie et al.
style DiD**

Unobserved or
directly related to
treatment

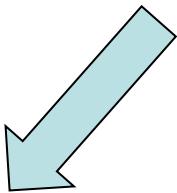
**2SLS for noisy proxy
affected by confound
but not by treatment**
Freyaldenhoven, Hansen,
Shapiro, AER '19

What to do?

Source of pre-trend
(i.e., confound)

Known

(i.e., plausible candidates)



Observed &
unrelated to
treatment

**Control for
covariate**

(e.g., age effect)

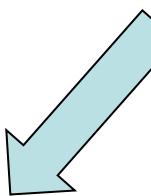
Unobserved or
directly related to
treatment

**2SLS for noisy proxy
affected by confound
but not by treatment**

Freyaldenhoven, Hansen,
Shapiro, AER '19

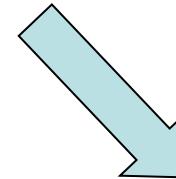
Unknown

(i.e., no obvious economic mechanism)



Learn from the
data (i.e. construct
control group)

**Synthetic controls
or Dobbie et al.
style DiD**



Assess the
amount of bias

**Construct confidence
sets based on
plausible violation of
the linear trend**

Rambachan & Roth, Restud '23

Research Design

$$y_{i,t} = \gamma_t + \gamma_c + \alpha \cdot r_{i,t} + \sum_{\tau=-24}^{\tau=60} \delta_{\tau} \cdot I\{r_{i,t} = \tau\}$$

Three key threats to identification:

- 1). Linear trend extrapolation
- 2). Heterogeneous dynamic effects across cohorts
- 3). Heterogeneous dynamic effects across periods

Research Design

$$y_{i,t} = \gamma_t + \gamma_c + \alpha \cdot r_{i,t} + \sum_{\tau=-24}^{\tau=60} \delta_{\tau,c} \cdot I\{r_{i,t} = \tau\}$$

Three key threats to identification:

- 1). Linear trend extrapolation
- 2). Heterogeneous dynamic effects across cohorts**
- 3). Heterogeneous dynamic effects across periods

Issue 2: Heterogeneous Treatment by Cohort

What if the dynamic treatment effect is heterogeneous across **cohorts**?

Then, because:

- adoption (flag removal) is staggered
- there is no never-treated group

=> Estimator is not a properly weighted average of cohort-specific policy effects (can be $>$ or $<$ than all individual cohort effects!)

Issue 2: Heterogeneous Treatment by Cohort

What if the dynamic treatment effect is heterogeneous across **cohorts**?

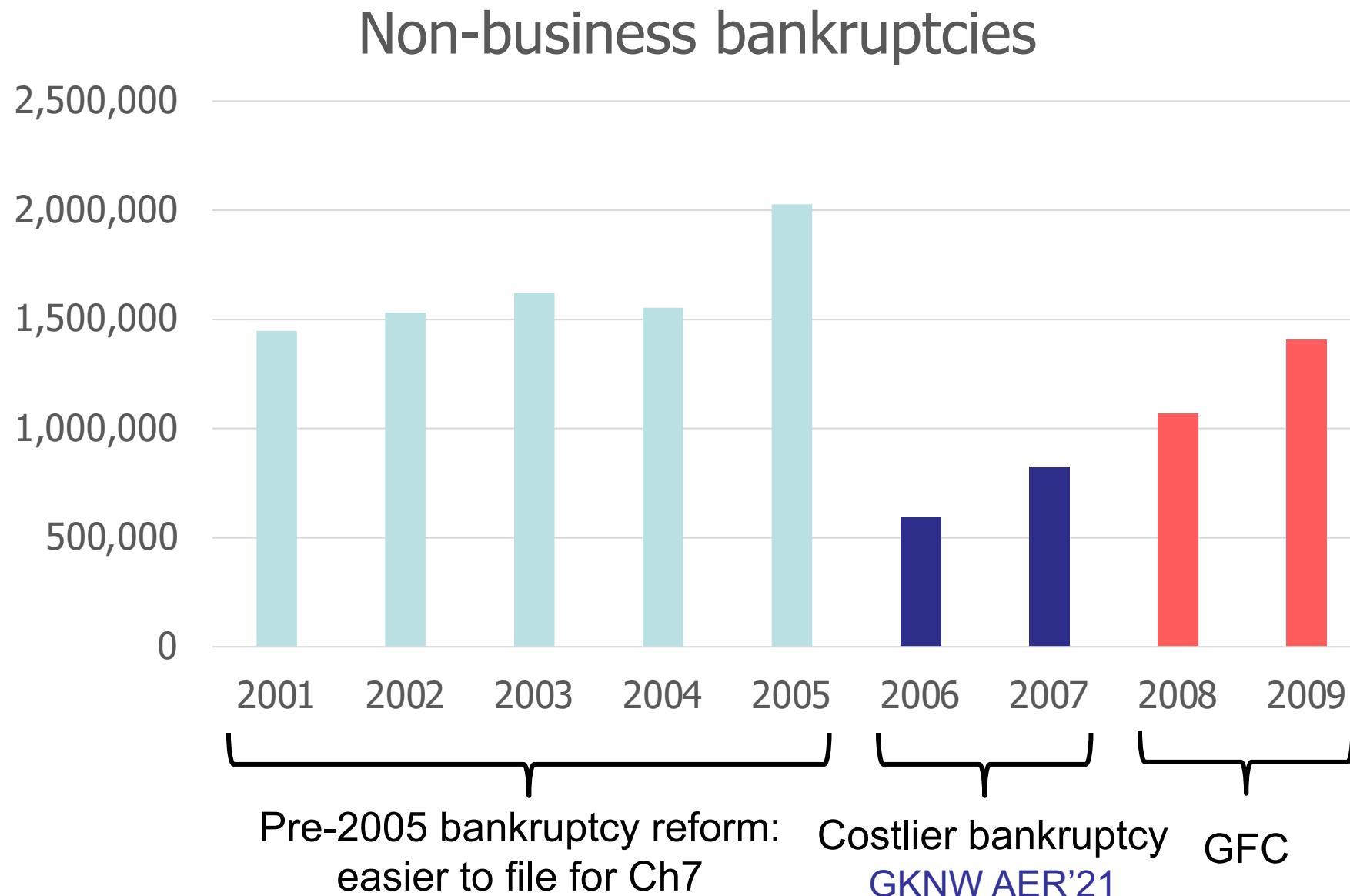
Then, because:

- adoption (flag removal) is staggered
- there is no never-treated group

=> Estimator is not a properly weighted average of cohort-specific policy effects (can be $>$ or $<$ than all individual cohort effects!)

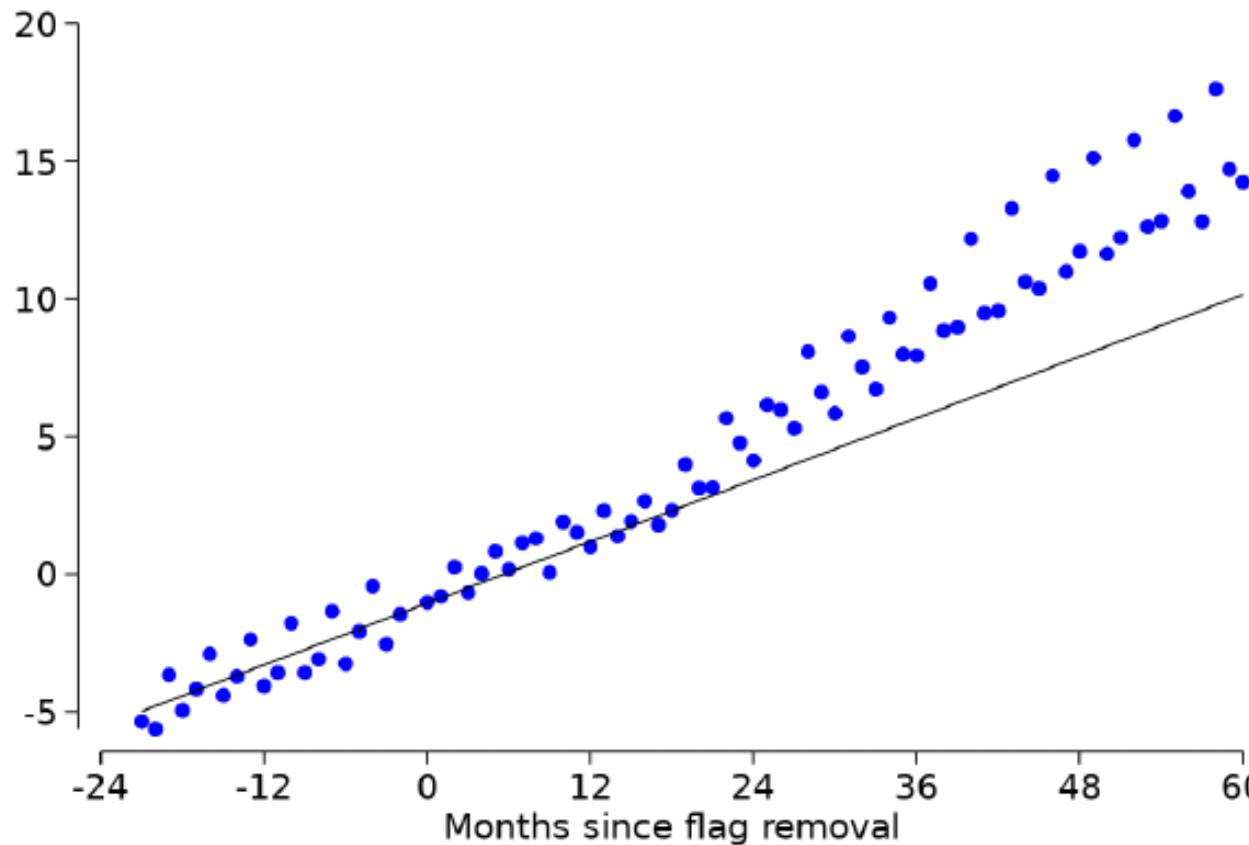
Is there reason to think dynamic effects could be heterogeneous across cohorts?

I. Selection likely to varies across cohorts



II. Within-year, heterogeneous trends across month of filing ?

Credit score: Parent- Child



Research Design

$$y_{i,t} = \gamma_t + \gamma_c + \alpha \cdot r_{i,t} + \sum_{\tau=-24}^{\tau=60} \delta_{\tau} \cdot I\{r_{i,t} = \tau\}$$

Three key threats to identification:

- 1). Linear trend extrapolation
- 2). Heterogeneous dynamic effects across cohorts
- 3). Heterogeneous dynamic effects across periods

Research Design

$$y_{i,t} = \gamma_t + \gamma_c + \alpha \cdot r_{i,t} + \sum_{\tau=-24}^{\tau=60} \delta_{\tau,t} \cdot I\{r_{i,t} = \tau\}$$

Three key threats to identification:

- 1). Linear trend extrapolation
- 2). Heterogeneous dynamic effects across cohorts
- 3). Heterogeneous dynamic effects across periods**

Issue 3: Heterogeneous Treatment by Year

What if the dynamic treatment effect is heterogeneous across **periods**?

Then, because:

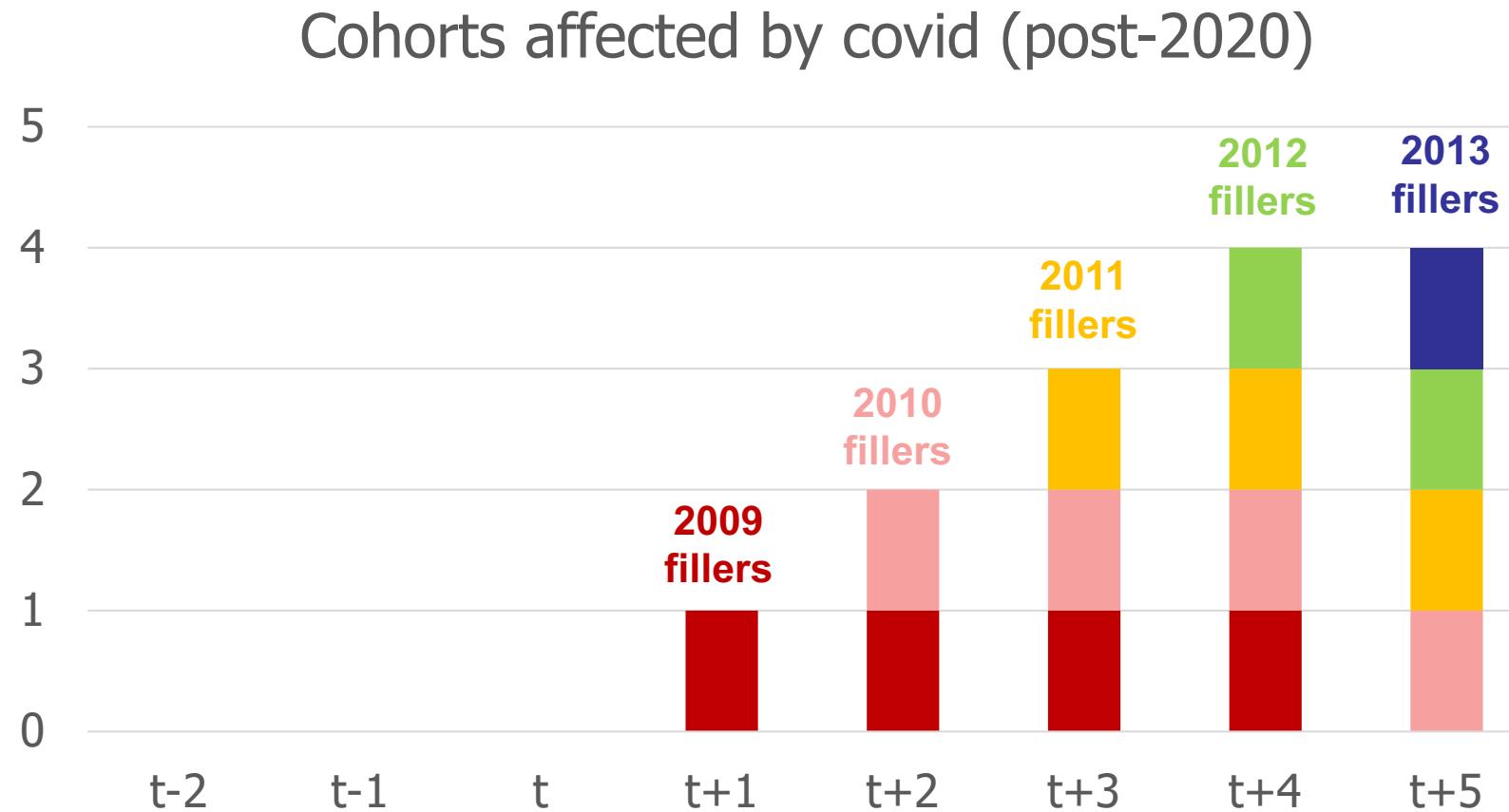
- adoption (flag removal) is staggered
- there is no never-treated group

=> Estimator is not a properly weighted average of cohort-specific policy effects (can be $>$ or $<$ than all individual cohort effects!)

Is there reason to think dynamic effects could be heterogeneous across periods?

Exposure to Covid Period

Covid policies (student loan suspension, mortgage forbearance, UI, stimulus checks, etc.) may change the dynamic effect of flag removal



What to do?

Include a group of untreated or not yet treated

+

Use heterogeneity-robust estimators

Conclusion

Really ambitious and exciting project!

- Identification in panel event-studies is challenging, but area of rapid progress: many fixes now available!
- New linkages are a major contribution to Household Finance.
- Opens lots of new opportunities for study of informal insurance, intra-household decision-making, policy evaluations, etc.