

Present Bias Unconstrained: Consumption, Welfare, and the Present-Bias Dilemma

by Peter Maxted

Discussion by Taha Choukhmane
NBER & MIT Sloan

NBER Behavioral Finance Working Group
Fall 2022

Introduction

Fantastic paper, full of insights, can't do justice in a short presentation:

Read the paper!

Introduction

Fantastic paper, full of insights, can't do justice in a short presentation:

Read the paper!

My main take-away:

Most of my (your?) intuitions about
Present Bias are wrong*

* Under some assumptions

Most of my (your?) intuitions about:

I. $\beta\delta$ -Model behavior

II. Individuals behavior

III. Optimal Policy

... are wrong*

* Under some assumptions

Most of my (your?) intuitions about:

I. $\beta\delta$ -Model behavior

II. Individuals behavior

III. Optimal Policy

... are wrong*

* Under some assumptions

Quasi-hyperbolic model is notoriously challenging to work with !

$$u_t + \beta \delta (u_{t+1} + \delta u_{t+2} + \delta^2 u_{t+3} + \dots)$$

Naivete + finite horizon:

- ⇒ Simple and tractable model
- ⇒ **Most applications of the model rely on this setup!**

Quasi-hyperbolic model is notoriously challenging to work with !

$$u_t + \beta \delta (u_{t+1} + \delta u_{t+2} + \delta^2 u_{t+3} + \dots)$$

Naivete + finite horizon:

- ⇒ Simple and tractable model
- ⇒ **Most applications of the model rely on this setup!**

Sophistication + finite horizon:

(Krusell and Smith, 2003; Cao and Werning, 2018; Laibson and Maxted, 2022)

Pathologies: policy functions are not continuous + no robust predictions

Quasi-hyperbolic model is notoriously challenging to work with !

$$u_t + \beta \delta (u_{t+1} + \delta u_{t+2} + \delta^2 u_{t+3} + \dots)$$

Naivete + finite horizon:

- ⇒ Simple and tractable model
- ⇒ **Most applications of the model rely on this setup!**

Sophistication + finite horizon:

(Krusell and Smith, 2003; Cao and Werning, 2018; Laibson and Maxted, 2022)

Pathologies: policy functions are not continuous + no robust predictions

Sophistication + infinite horizon:

Pathologies (discontinuities etc.)

+ multiple Markov equilibria

Quasi-hyperbolic model is notoriously challenging to work with !

$$u_t + \beta \delta (u_{t+1} + \delta u_{t+2} + \delta^2 u_{t+3} + \dots)$$

Naivete + finite horizon:

- ⇒ Simple and tractable model
- ⇒ **Most applications of the model rely on this setup!**

Sophistication + finite horizon:

(Krusell and Smith, 2003; Cao and Werning, 2018; Laibson and Maxted, 2022)

Pathologies: policy functions are not continuous + no robust predictions

Sophistication + infinite horizon:

Pathologies (discontinuities etc.)

+ multiple Markov equilibria

Matters for macro & finance !

Simple Model

$$u(c_1) + \beta \delta (u(c_2) + \delta u(c_3))$$

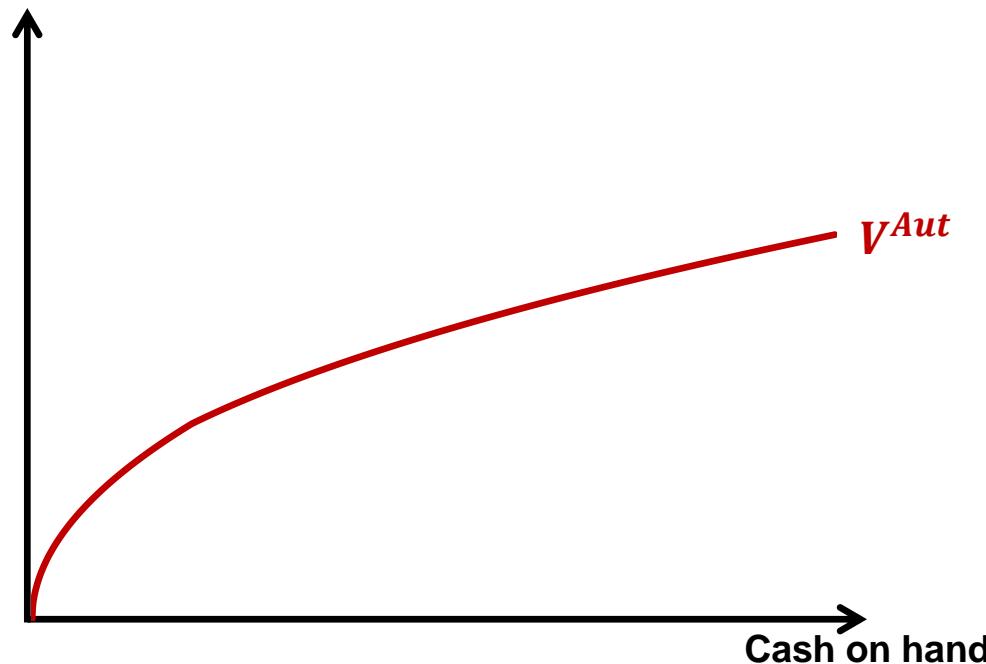
Setting:

- Sophisticated Present Bias
- Discrete time 3 periods
- CRRA utility
- Endowment w in each period
- No risk

Step 1: Financial Autarky

$$u(x) + \beta \delta (u(\mathbf{w}) + \delta u(\mathbf{w}))$$

Value function (t=1)



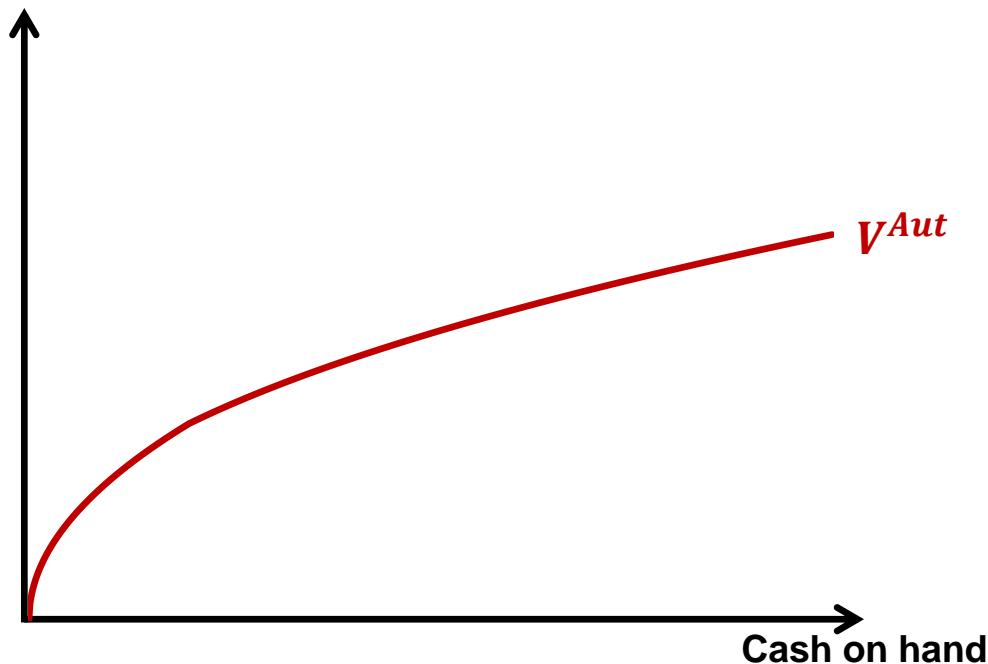
Saving function (t=1)

Step 2: Saving technology s_1 btw $t=1 \rightarrow t=2$

$$u(x - s_1) + \beta \delta (u(w + s_1) + \delta u(w))$$

$$s.t. \ s_1 \geq 0$$

Value function (t=1)



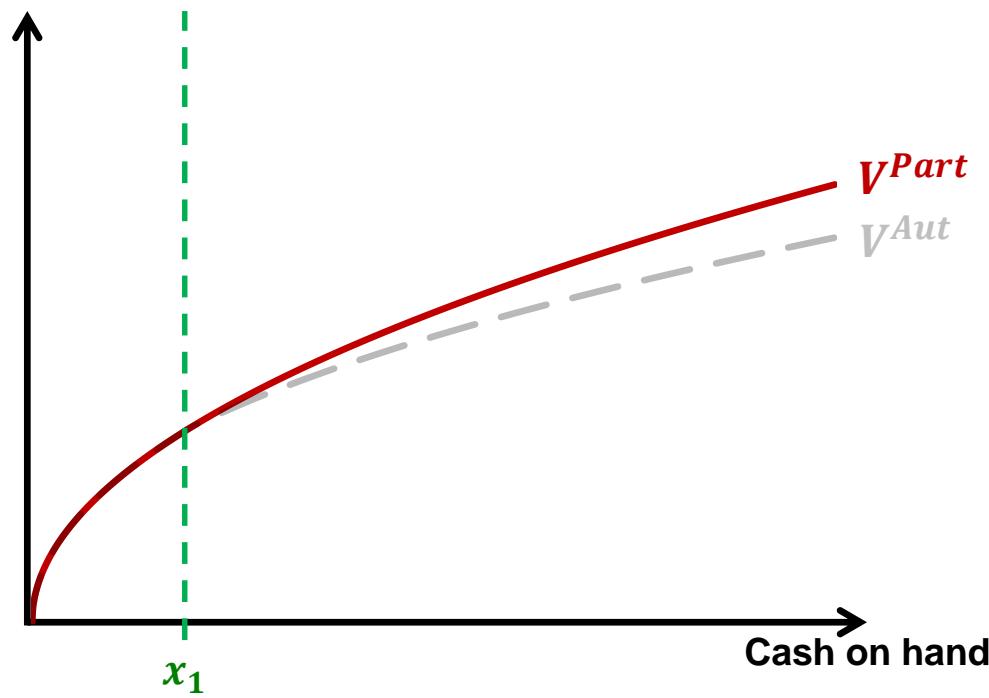
Saving function (t=1)

Step 2: Saving technology s_1 btw $t=1 \rightarrow t=2$

$$u(x - s_1) + \beta \delta (u(w + s_1) + \delta u(w))$$

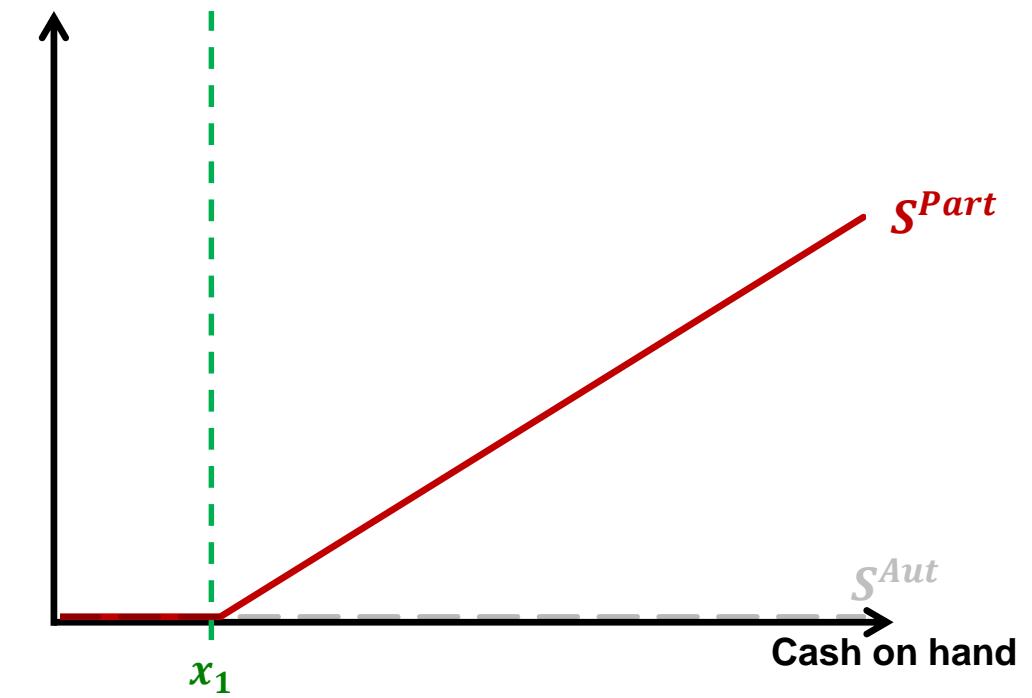
$$s.t. \quad s_1 \geq 0$$

Value function (t=1)



current constraint
binds for $x < \underline{x}_1$

Saving function (t=1)

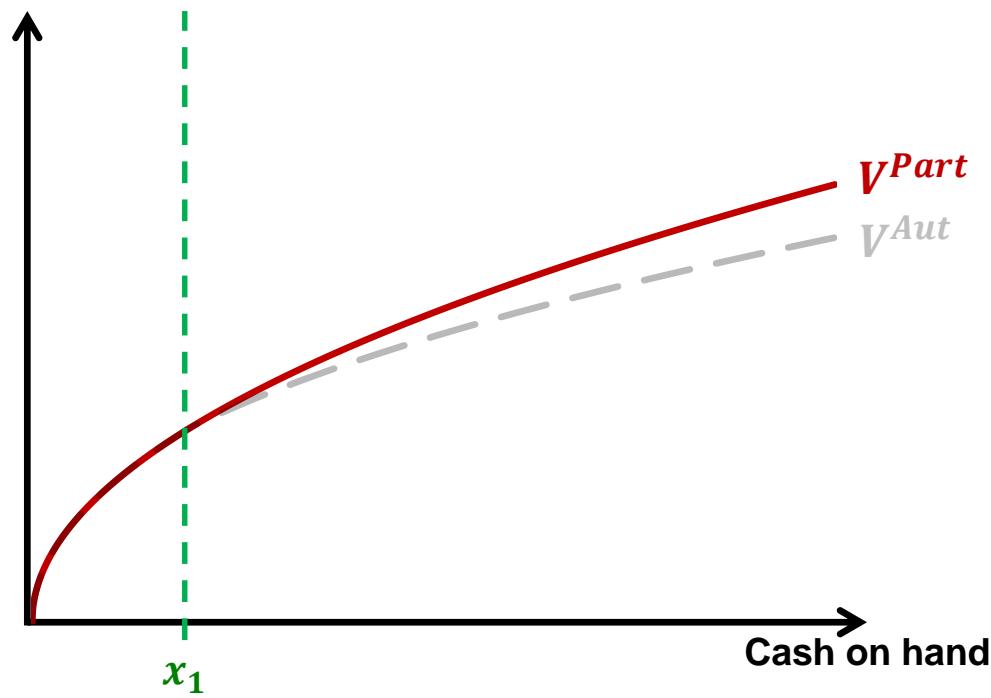


Step 3: Saving technology s_2 btw $t=2 \rightarrow t=3$

$$u(x - s_1) + \beta \delta (u(w + s_1 - s_2) + \delta u(w + s_2))$$

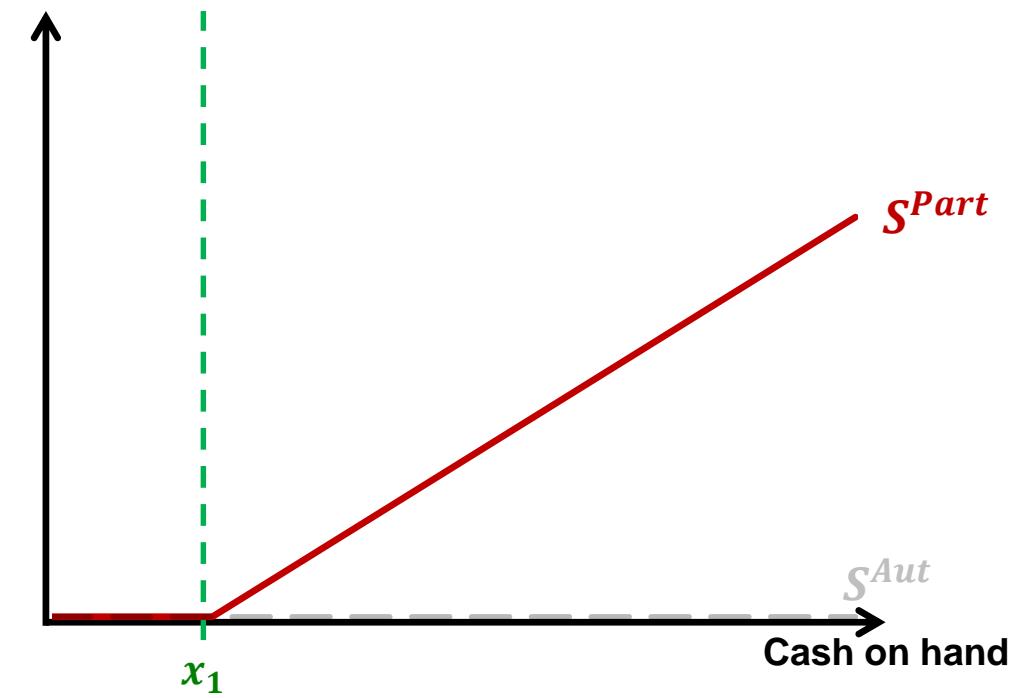
$$s.t. \ s_1 \geq 0 \ \& \ s_2 \geq 0$$

Value function (t=1)



current constraint
binds for $x < \underline{x}_1$

Saving function (t=1)

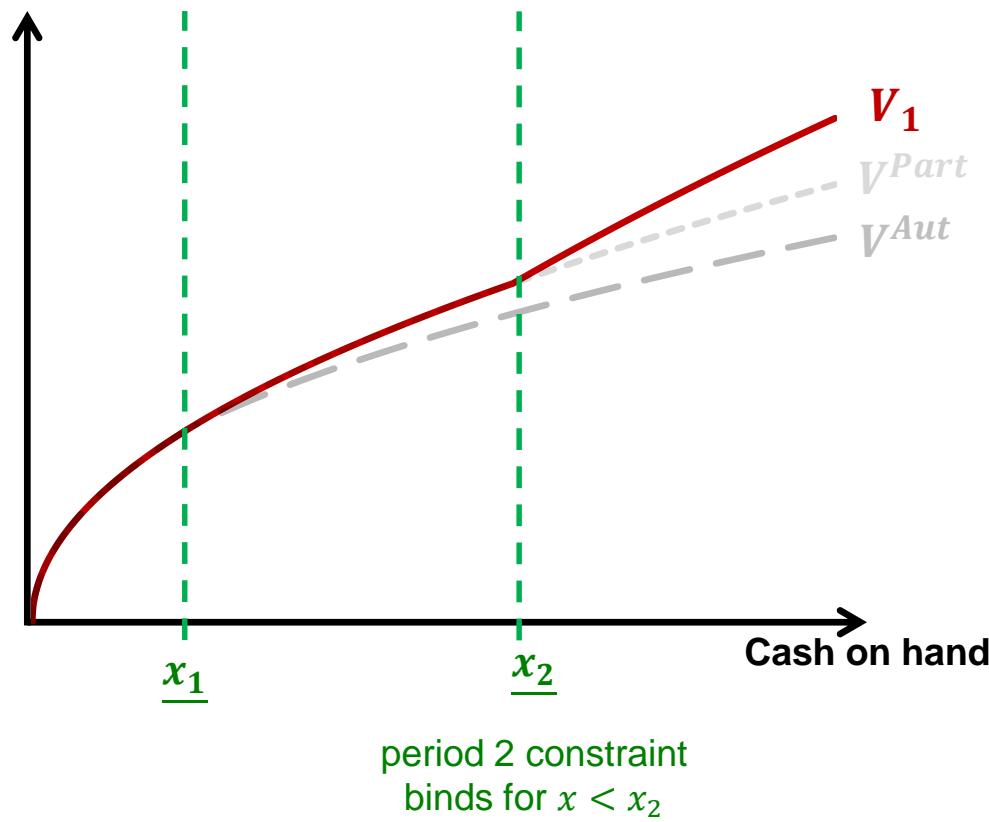


Step 3: Saving technology s_2 btw t=2 → t=3

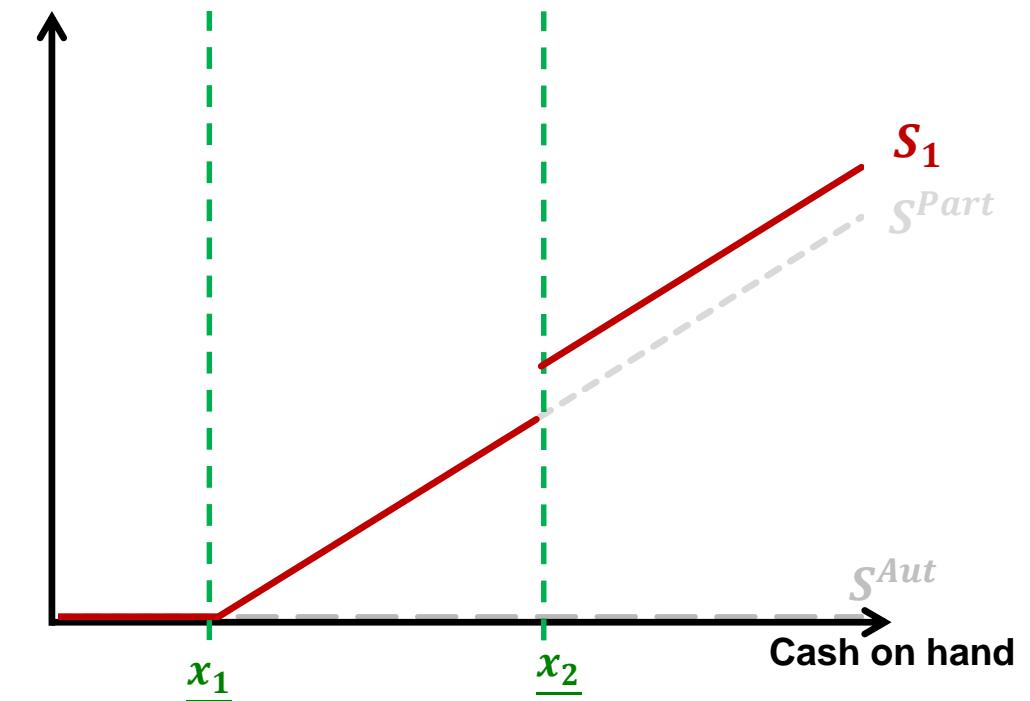
$$u(x - s_1) + \beta \delta (u(w + s_1 - s_2) + \delta u(w + s_2))$$

$$s.t. \ s_1 \geq 0 \ \& \ s_2 \geq 0$$

Value function (t=1)



Saving function (t=1)



Why does the saving policy jump?

$$\max_{s_1 \geq 0} \quad u(x - s_1) + \beta \delta \left[\underbrace{u(w + s_1 - s_2^*) + \delta u(w + s_2^*)}_{=V_2} \right]$$

When period-2 self is credit constrained (cash on hand $< \underline{x}_2$):

$$\frac{dV_1}{ds_1} = \underbrace{-\frac{\partial u(c_1)}{\partial s_1}}_{\text{marg. cost of } s_1} + \underbrace{\beta \delta \left(\frac{\partial u(c_2)}{\partial s_1} \right)}_{\text{marg. benefit from } s_1}$$

Why does the saving policy jump?

$$\max_{s_1 \geq 0} \quad u(x - s_1) + \beta \delta \left[\underbrace{u(w + s_1 - s_2^*) + \delta u(w + s_2^*)}_{=V_2} \right]$$

When period-2 self is credit constrained (cash on hand $< \underline{x}_2$):

$$\frac{dV_1}{ds_1} = \underbrace{-\frac{\partial u(c_1)}{\partial s_1}}_{\text{marg. cost of } s_1} + \underbrace{\beta \delta \left(\frac{\partial u(c_2)}{\partial s_1} \right)}_{\text{marg. benefit from } s_1}$$

When period-2 self is not constrained (cash on hand $> \underline{x}_2$):

$$\frac{dV_1}{ds_1} = \underbrace{-\frac{\partial u(c_1)}{\partial s_1}}_{\text{marg. cost of } s_1} + \underbrace{\beta \delta \left(\frac{\partial u(c_2)}{\partial s_1} + \frac{\partial V_2}{\partial s_2^*} \frac{\partial s_2^*}{\partial s_1} \right)}_{\text{marg. benefit from } s_1}$$

Why does the saving policy jump?

$$\max_{s_1 \geq 0} \quad u(x - s_1) + \beta \delta \left[\underbrace{u(w + s_1 - s_2^*) + \delta u(w + s_2^*)}_{=V_2} \right]$$

When period-2 self is credit constrained (cash on hand $< \underline{x}_2$):

$$\frac{dV_1}{ds_1} = \underbrace{-\frac{\partial u(c_1)}{\partial s_1}}_{\text{marg. cost of } s_1} + \underbrace{\beta \delta \left(\frac{\partial u(c_2)}{\partial s_1} \right)}_{\text{marg. benefit from } s_1}$$

When period-2 self is not constrained (cash on hand $> \underline{x}_2$):

$$\frac{dV_1}{ds_1} = \underbrace{-\frac{\partial u(c_1)}{\partial s_1}}_{\text{marg. cost of } s_1} + \underbrace{\beta \delta \left(\frac{\partial u(c_2)}{\partial s_1} + \frac{\partial V_2}{\partial s_2^*} \frac{\partial s_2^*}{\partial s_1} \right)}_{\text{marg. benefit from } s_1}$$

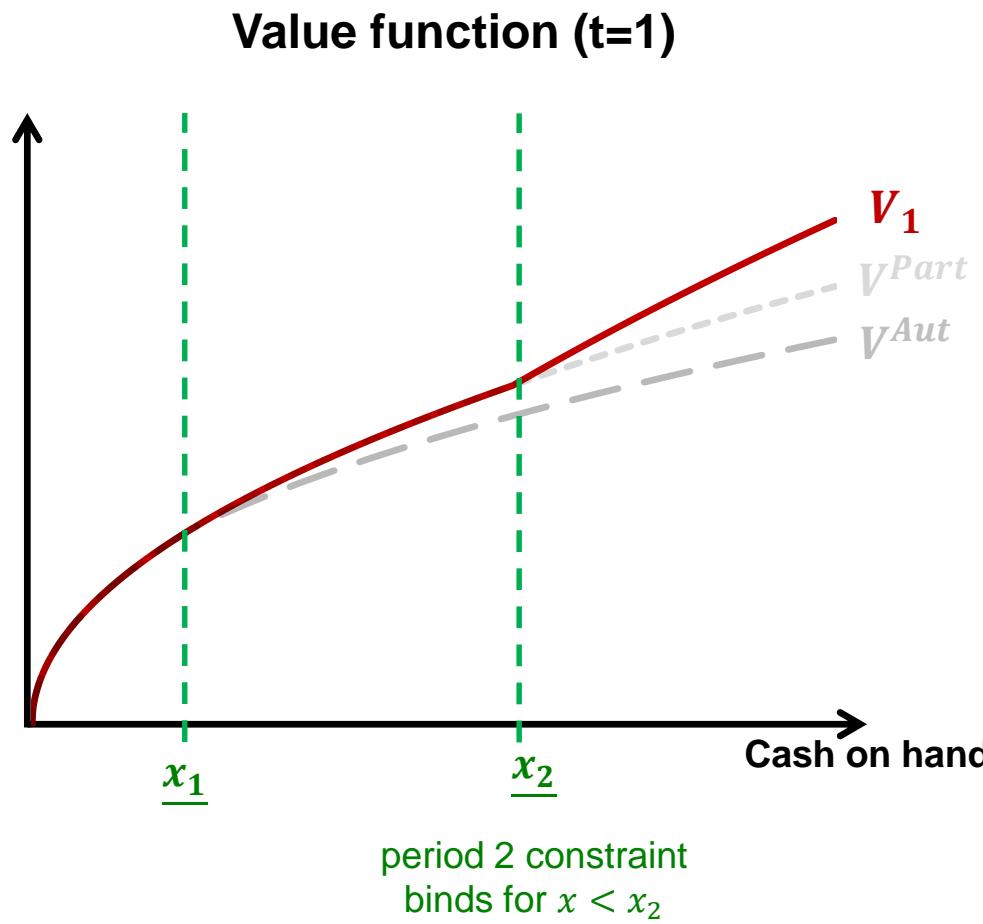
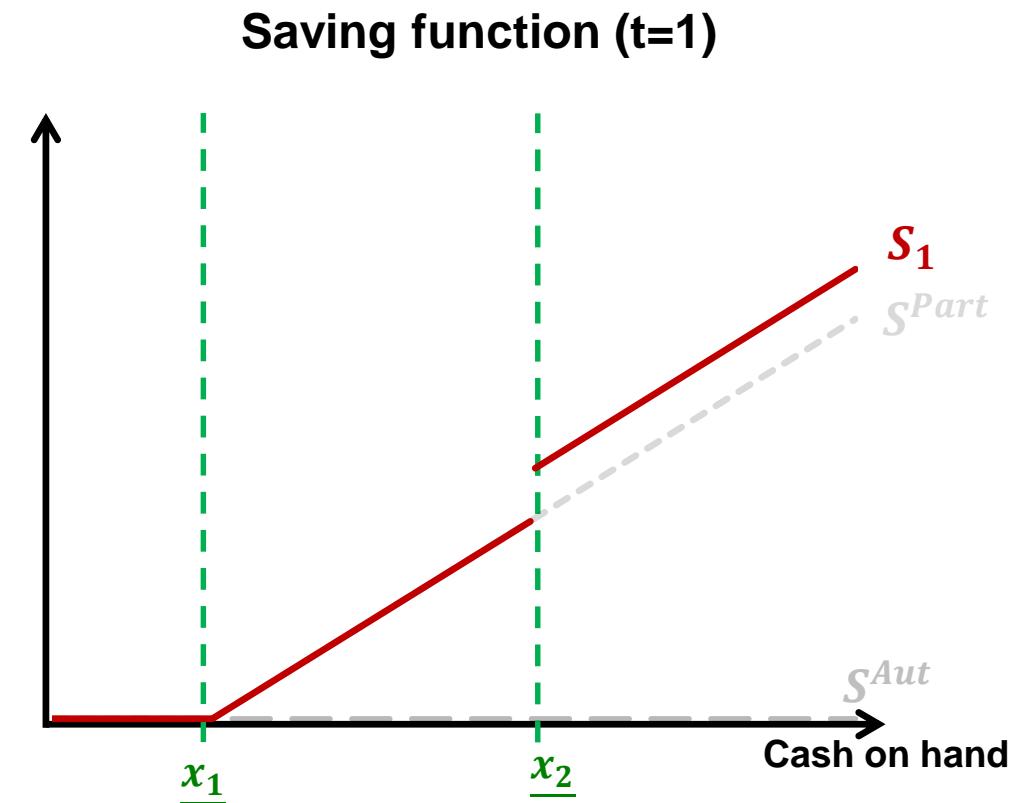
Envelope theorem doesn't not apply b/c s_2^* optimized according to period-2 preferences $\frac{\partial V_2}{\partial s_2^*}(s_2^*) > 0$

Marginal value of additional saving **jumps** at \underline{x}_2 !

Step 3: Saving technology s_2 btw t=2 → t=3

$$u(x - s_1) + \beta \delta (u(w + s_1 - s_2) + \delta u(w + s_2) + \delta^2 u(w))$$

$$s.t. \ s_1 \geq 0 \ \& \ s_2 \geq 0$$

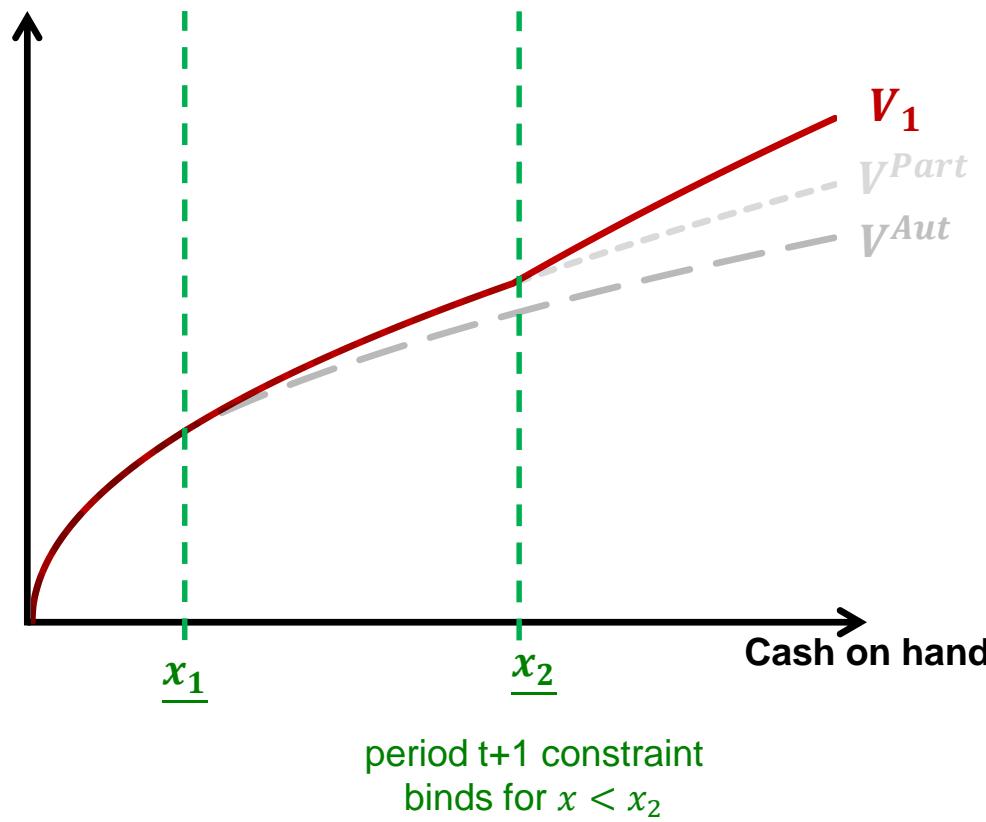


Step 4 : Step back one period (t=0)

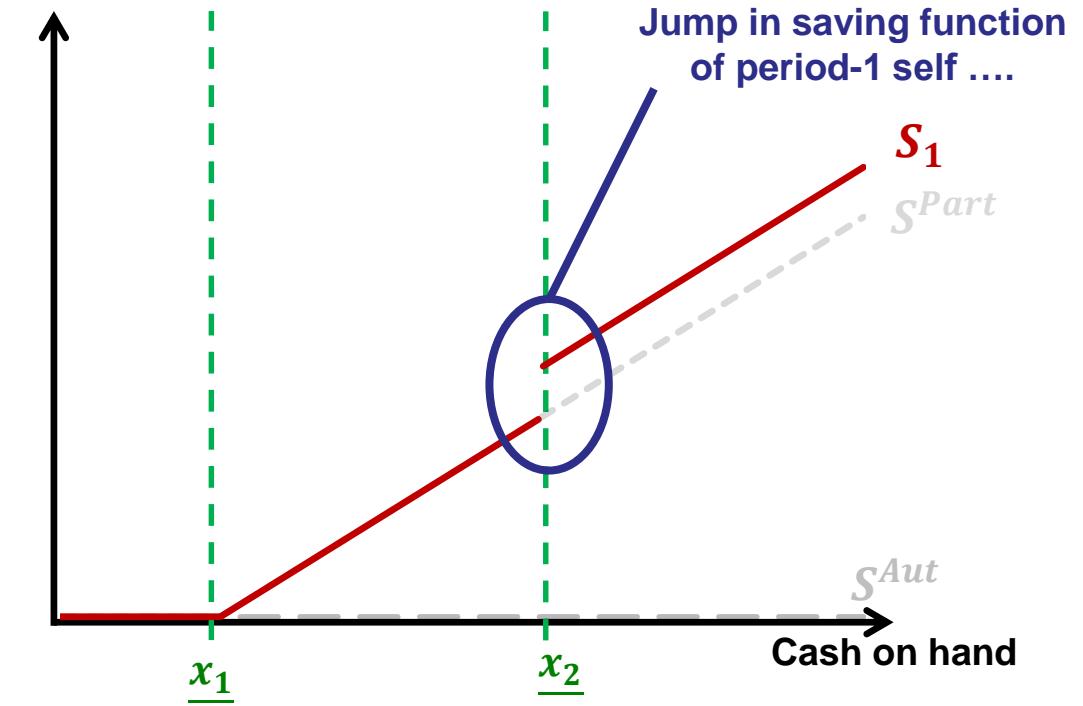
$$u(x - s_0) + \beta \delta (u(w + s_0 - s_1) + \delta u(w + s_1 - s_2) + \delta^2 u(w + s_2))$$

s.t. & $s_0 \geq 0$ & $s_1 \geq 0$ & $s_2 \geq 0$ & $s_3 \geq 0$

Value function (t=1)



Saving function (t=1)

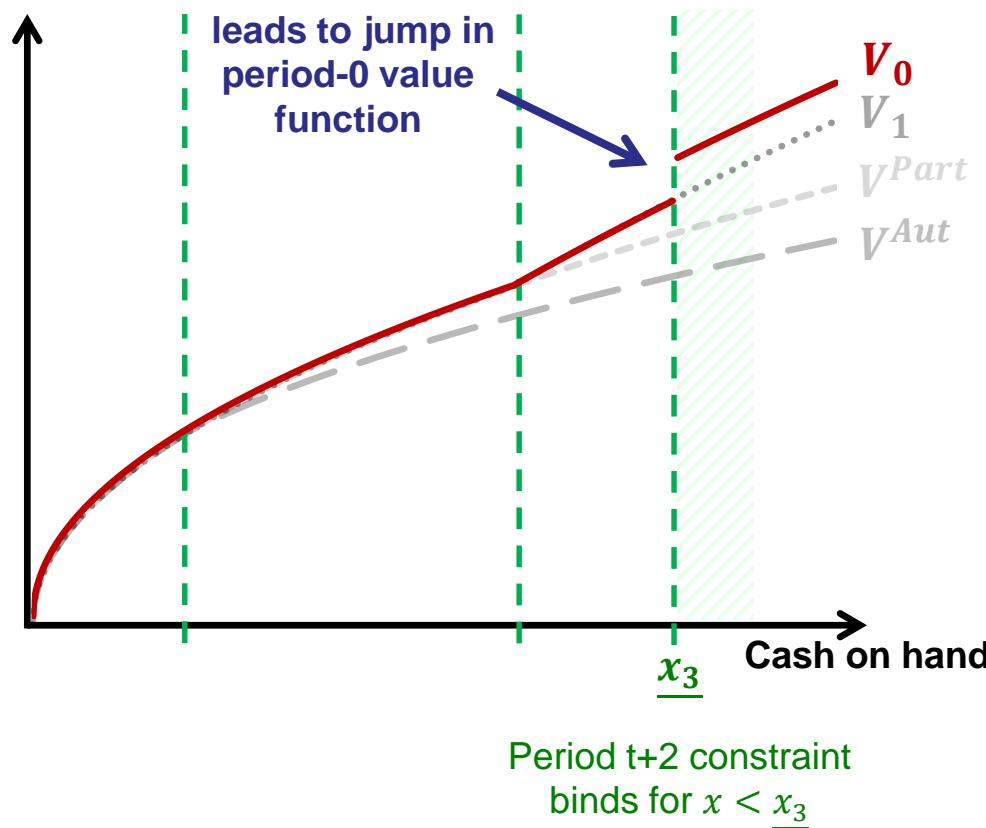


Step 4 : Step back one period (t=0)

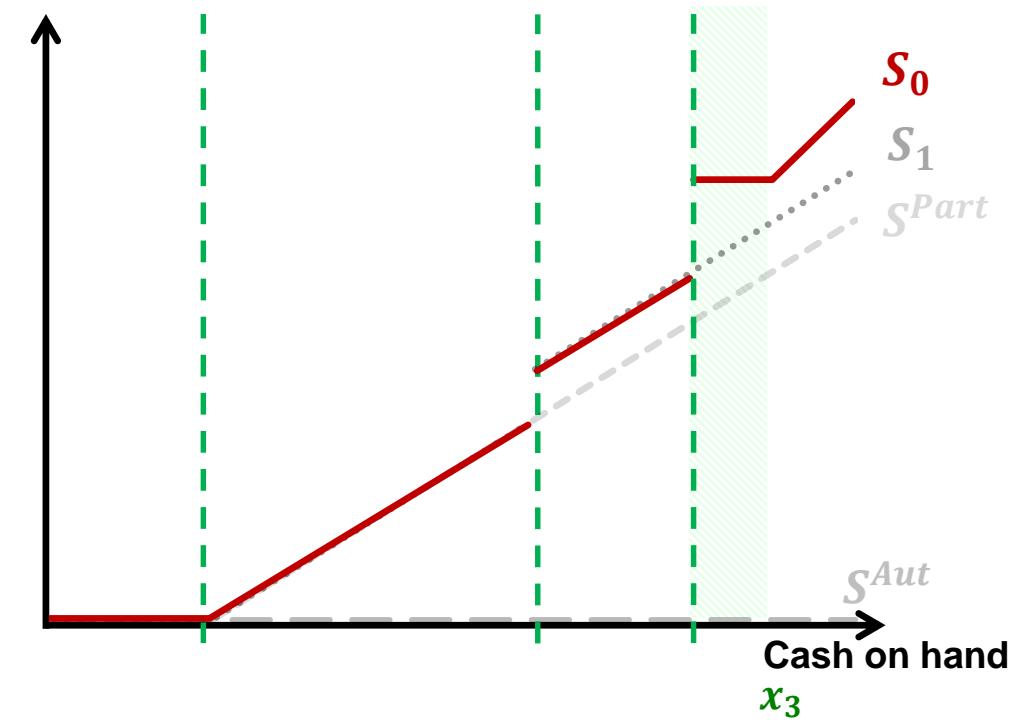
$$u(x - s_0) + \beta \delta (u(w + s_0 - s_1) + \delta u(w + s_1 - s_2) + \delta^2 u(w + s_2))$$

s.t. & $s_0 \geq 0$ & $s_1 \geq 0$ & $s_2 \geq 0$ & $s_3 \geq 0$

Value function (t=0)



Saving function (t=0)



The Methodological Contribution

Significant challenge:

- Can't rely on standard local numerical methods
- Difficult to incorporate sophistication in quantitative models

The Methodological Contribution

Significant challenge:

- Can't rely on standard local numerical methods
- Difficult to incorporate sophistication in quantitative models

Peter 1st methodological contribution:

- Model is tractable in region of state space where **constraints never bind**
=> same intuition carries through in my simple discrete time model!

The Methodological Contribution

Significant challenge:

- Can't rely on standard local numerical methods
- Difficult to incorporate sophistication in quantitative models

Peter 1st methodological contribution:

- Model is tractable in region of state space where **constraints never bind**
=> same intuition carries through in my simple discrete time model!

Peter 2nd methodological contribution :

- Model is tractable w/ arbitrary interest rate schedule (e.g. borrowing APR 10,000%)
=> result **does not apply** in simple **discrete-time** model
- **Continuous time:** always borrow a small amount at soft constraint (for all interest rates)
=> smooth saving function makes model more tractable (?)

Most of my (your?) intuitions about:

I. $\beta\delta$ -Model behavior

II. Individuals behavior

III. Optimal Policy

... are wrong*

* Under some assumptions

Irrelevance of β for behavior

Surprising predictions about the behavior of present-biased agents!

S1 - Illiquidity does not promote the saving of PB consumers
(e.g. retirement accounts, mortgages, etc.)

S2 – Sophistication may not create a demand for commitment

S3 – Regardless of the interest rate, PB consumers always borrow at 0 wealth

A Modigliani-Miller analogy

To break irrelevance of β some model **assumption must fail!**

S1 - Illiquidity does not promote the saving of PB consumers

S2 – Sophistication may not create a demand for commitment

S3 – Regardless of the interest rate, PB consumers always borrow at 0 wealth

A Modigliani-Miller analogy

To break irrelevance of β some model **assumption must fail!**

S1 - Illiquidity does not promote the saving of PB consumers
A1: Borrowing constraints never bind

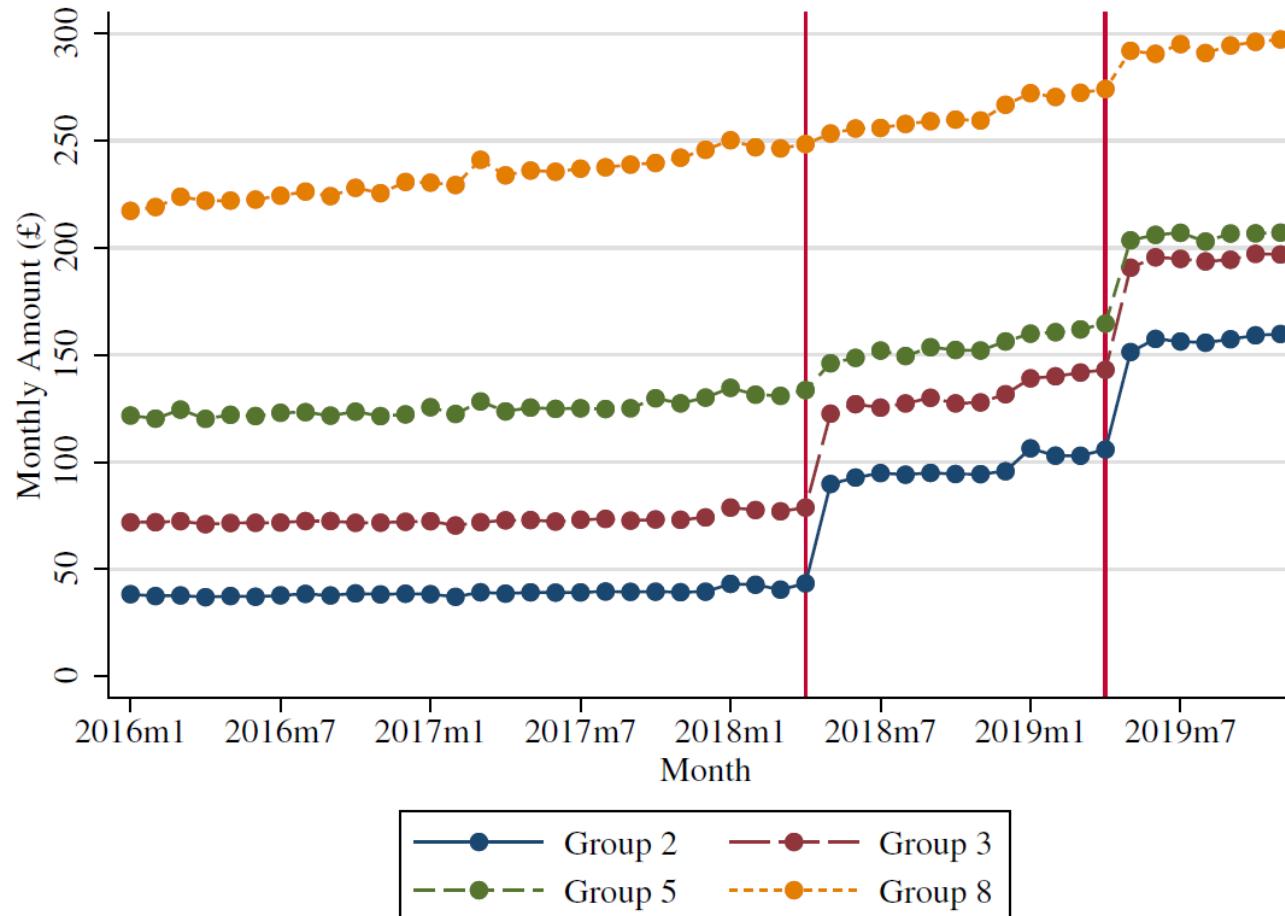
S2 – Sophistication may not create a demand for commitment

S3 – Regardless of the interest rate, PB consumers always borrow at 0 wealth

Choukmane, Palmer (work-in-progress)

Context: National Auto-Enrollment policy for all U.K private sector employees

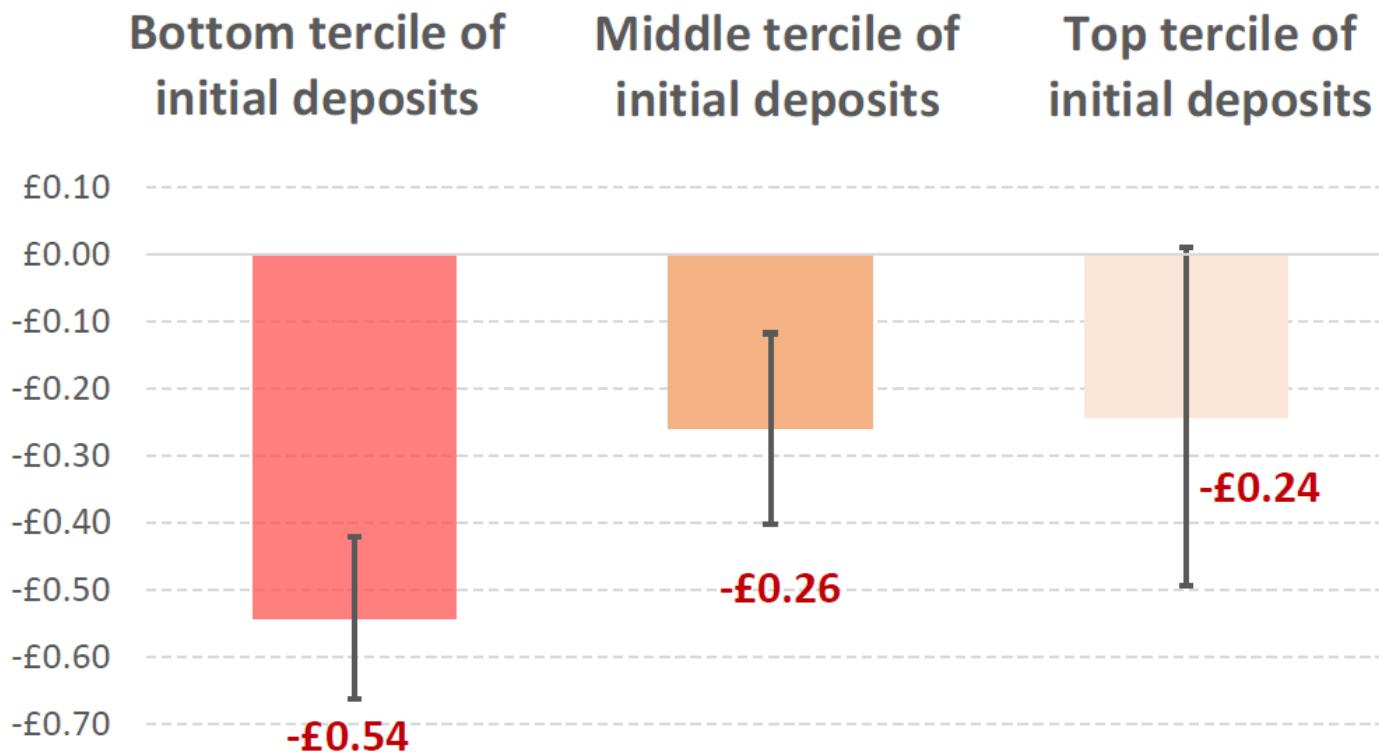
Variation: min. default contribution rate stepped up in April 2018 and April 2019



Choukhmane, Palmer (work-in-progress)

Pension \uparrow by £1/month \Rightarrow take-home pay \downarrow 67cts/month

Heterogeneity: \downarrow 54cts for those w. little initial deposits vs \downarrow 24cts for high initial deposits



A Modigliani-Miller analogy

To break irrelevance of β some model **assumption must fail!**

S1 - Illiquidity does not promote the saving of PB consumers
A1: Borrowing constraints never bind

S2 – Sophistication may not create a demand for commitment

S3 – Regardless of the interest rate, PB consumers always borrow at 0 wealth

A Modigliani-Miller analogy

To break irrelevance of β some model **assumption must fail!**

S1 - Illiquidity does not promote the saving of PB consumers

A1: Borrowing constraints never bind

S2 – Sophistication may not create a demand for commitment

A2: Borrowing technology is exogenous

S3 – Regardless of the interest rate, PB consumers always borrow at 0 wealth

Precommitments for Financial Self-Control? Micro Evidence from the 2003 Korean Credit Crisis

SungJin Cho

Seoul National University

John Rust

Georgetown University

We analyze high-frequency micro panel data on customers of a major Korean credit card company before and after the 2003 Korean credit crisis and find evidence of pervasive precommitment behavior that is difficult to explain using standard economic theories: (1) customers voluntarily reduce their credit card borrowing limits without any compensation, (2) customers turn down interest-free installment loan offers with high probability, and (3) of the small fraction of customers who do accept interest-free loan offers, most precommit to pay off the loan over a shorter term than the maximum allowed term under the offer.

A Modigliani-Miller analogy

To break irrelevance of β some model **assumption must fail!**

S1 - Illiquidity does not promote the saving of PB consumers

A1: Borrowing constraints never bind

S2 – Sophistication may not create a demand for commitment

A2: Borrowing technology is exogenous

S3 – Regardless of the interest rate, PB consumers always borrow at 0 wealth

A3: Equilibrium is Markov

Most of my (your?) intuitions about:

I. $\beta\delta$ -Model behavior

II. Individuals behavior

III. Optimal Policy

... are wrong*

* Under some assumptions

Irrelevance of β for **Policy**

Present bias irrelevant for whether policy changing **income process, interest rates, and illiquidity** is welfare improving

Examples:

- Moving from monthly to annual pay
- Regulating payday loan interest rates
- Heavily tax second mortgages
- Increasing the penalty on 401k withdrawals

Irrelevance of β for Policy

Present bias irrelevant for whether policy changing **income process, interest rates, and illiquidity** is welfare improving

Examples:

- Moving from monthly to annual pay
- Regulating payday loan interest rates
- Heavily tax second mortgages
- Increasing the penalty on 401k withdrawals

Alternatives? Gul and Pesendorfer (2001) Temptation model:

Aligns with (my) intuition + tractable in discrete time + can accommodate naivete (Ahn et al, 20)

Conclusion

Important (and very insightful) paper!

A must-read if you want to better understanding Present Bias

Opens up new opportunities for studying Present Bias in
quantitative models (e.g. Laibson, Maxted, Moll, 2021)