

To Pay or Autopay? Fintech Innovation and Credit Card Payments

by Jialan Wang

Discussion by Taha Choukhmane
MIT Sloan & NBER

Great paper!

**Rich administrative data +
quasi-experimental variation**

**An important contribution to both
Nudge & Fintech literatures!**

Part I

The Policy Variation

Policy variation

Pre-event applicants

Cashflow-based
underwriting
(majority)

Traditional credit
metrics
(minority)

Policy variation

Pre-event applicants

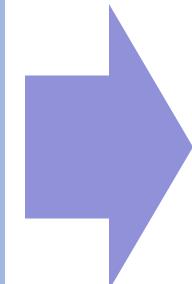
Cashflow-based
underwriting
(majority)

Traditional credit
metrics
(minority)

1st change

Cashflow-based
underwriting

Traditional credit
metrics



Policy variation

Pre-event applicants

Cashflow-based
underwriting
(majority)

Traditional credit
metrics
(minority)

1st change

Cashflow-based
underwriting

Traditional credit
metrics

Outcomes for approved borrowers:

- ↗ income
- ↗ credit limit
- ↘ auto-pay & min payment
- ↗ charge-offs
- ≈ avg. payment

Policy variation

Pre-event applicants

Cashflow-based
underwriting
(majority)

Traditional credit
metrics
(minority)

1st change

Cashflow-based
underwriting

Traditional credit
metrics

2nd change (a few months later)

Cashflow-based
underwriting

Traditional credit
metrics

Outcomes for approved borrowers:

- ↗ income
- ↗ credit limit
- ↘ auto-pay & min payment
- ↗ charge-offs
- ≈ avg. payment

- ↘ income
- ↘ credit limit
- ↗ auto-pay & min payment
- ≈ charge-offs
- ≈ avg. payment

Part II

The Mechanism

4 Types of Applicants

High Trad
High CF

⇒ Always
approved

4 Types of Applicants

High Trad
High CF

⇒ Always
approved

Low Trad
High CF

⇒ Depends on
screening
⇒ technology

High Trad
Low CF

4 Types of Applicants

High Trad
High CF

⇒ Always
approved

Low Trad
High CF

⇒ Depends on
screening
⇒ technology

High Trad
Low CF

⇒ Never
approved

Low Trad
Low CF

Channel 1: Change in selection ?

High Trad
High CF

Low Trad
High CF

High Trad
Low CF

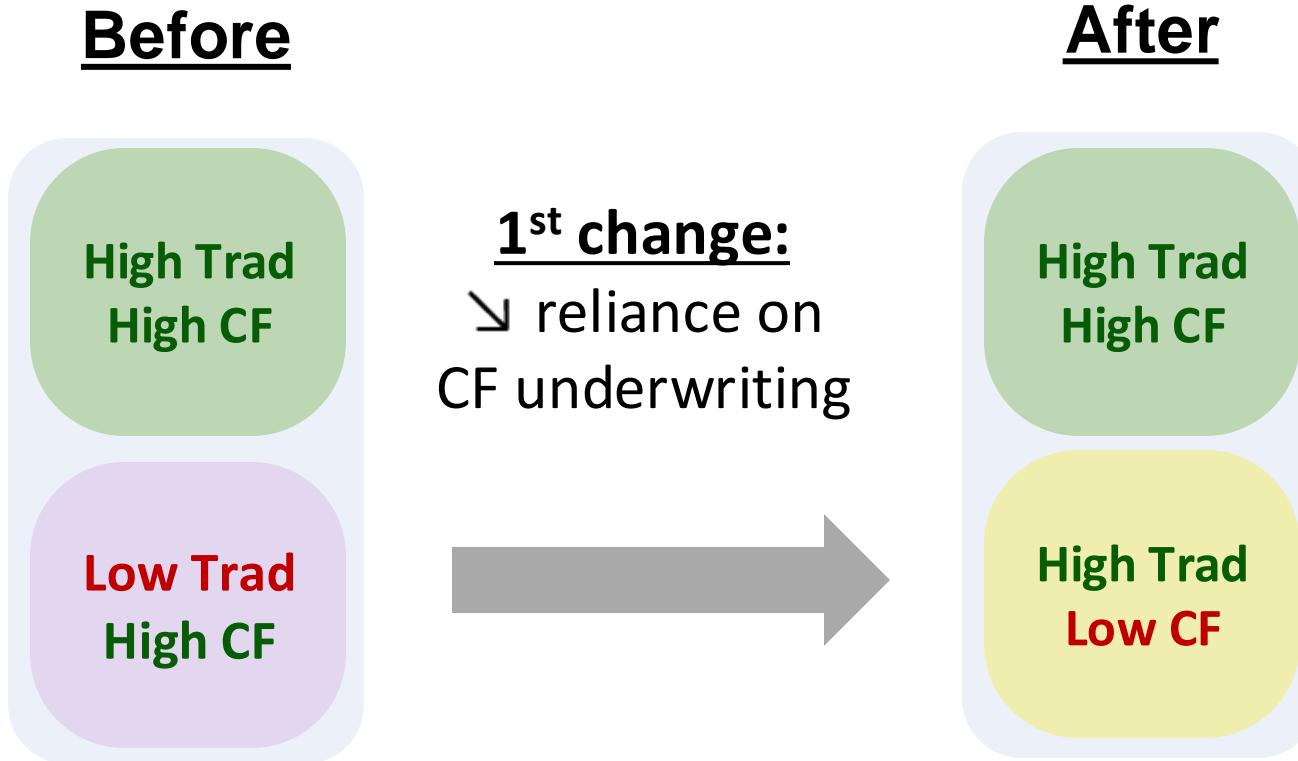
Low Trad
Low CF

Before: most applicants subject to CF underwriting

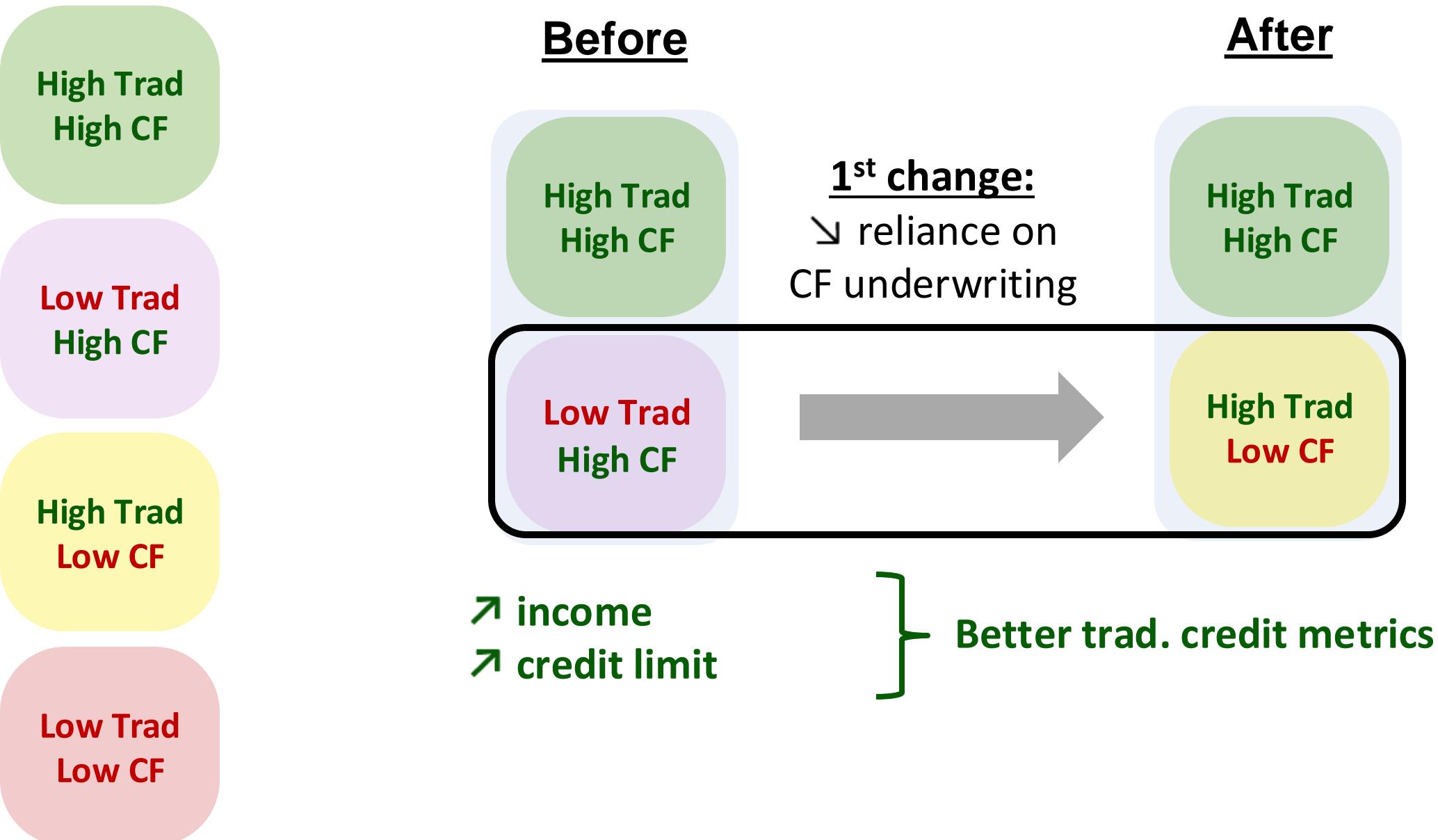
High Trad
High CF

Low Trad
High CF

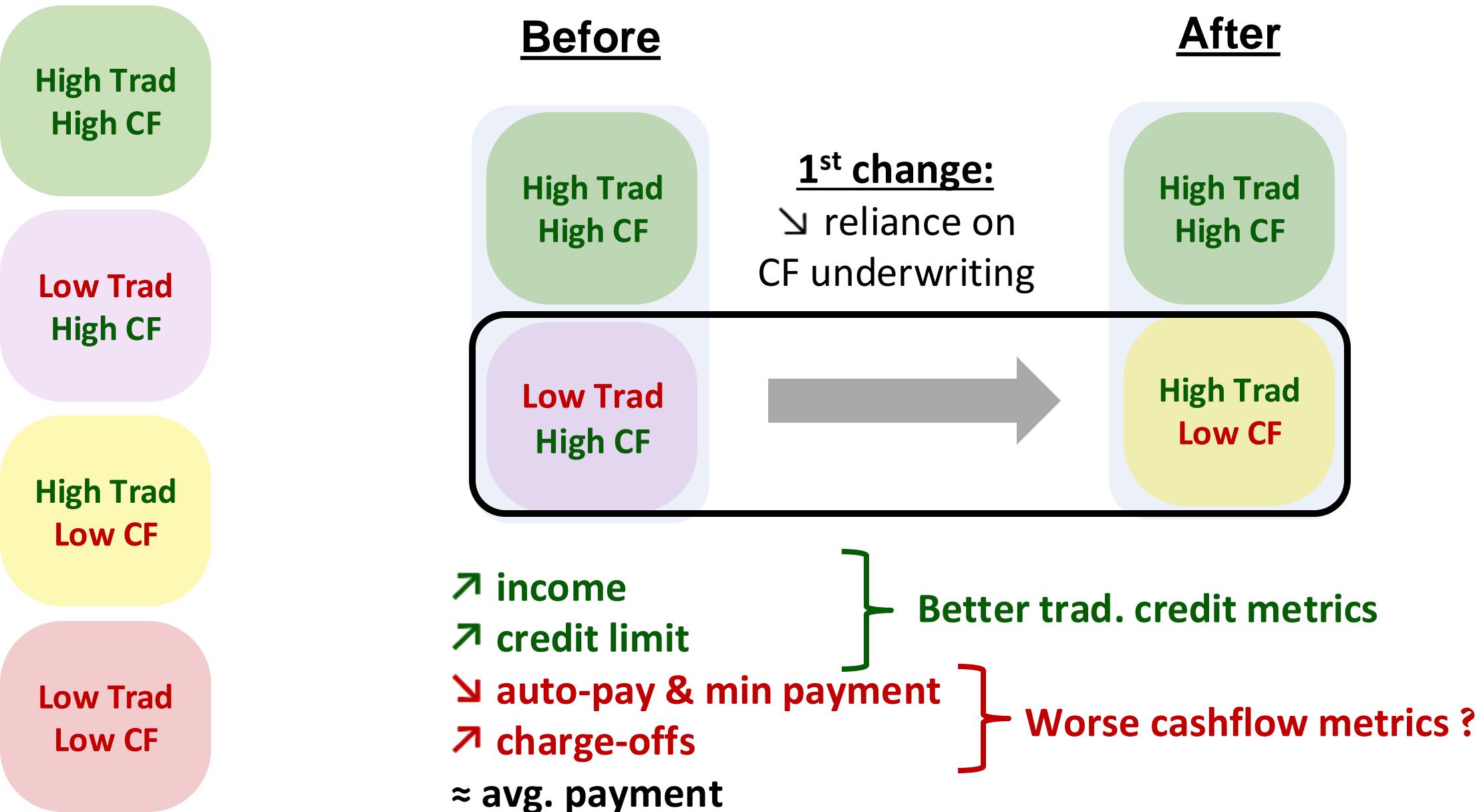
Channel 1: Change in selection ?



Channel 1: Change in selection ?



Channel 1: Change in selection ?



Is it all selection?

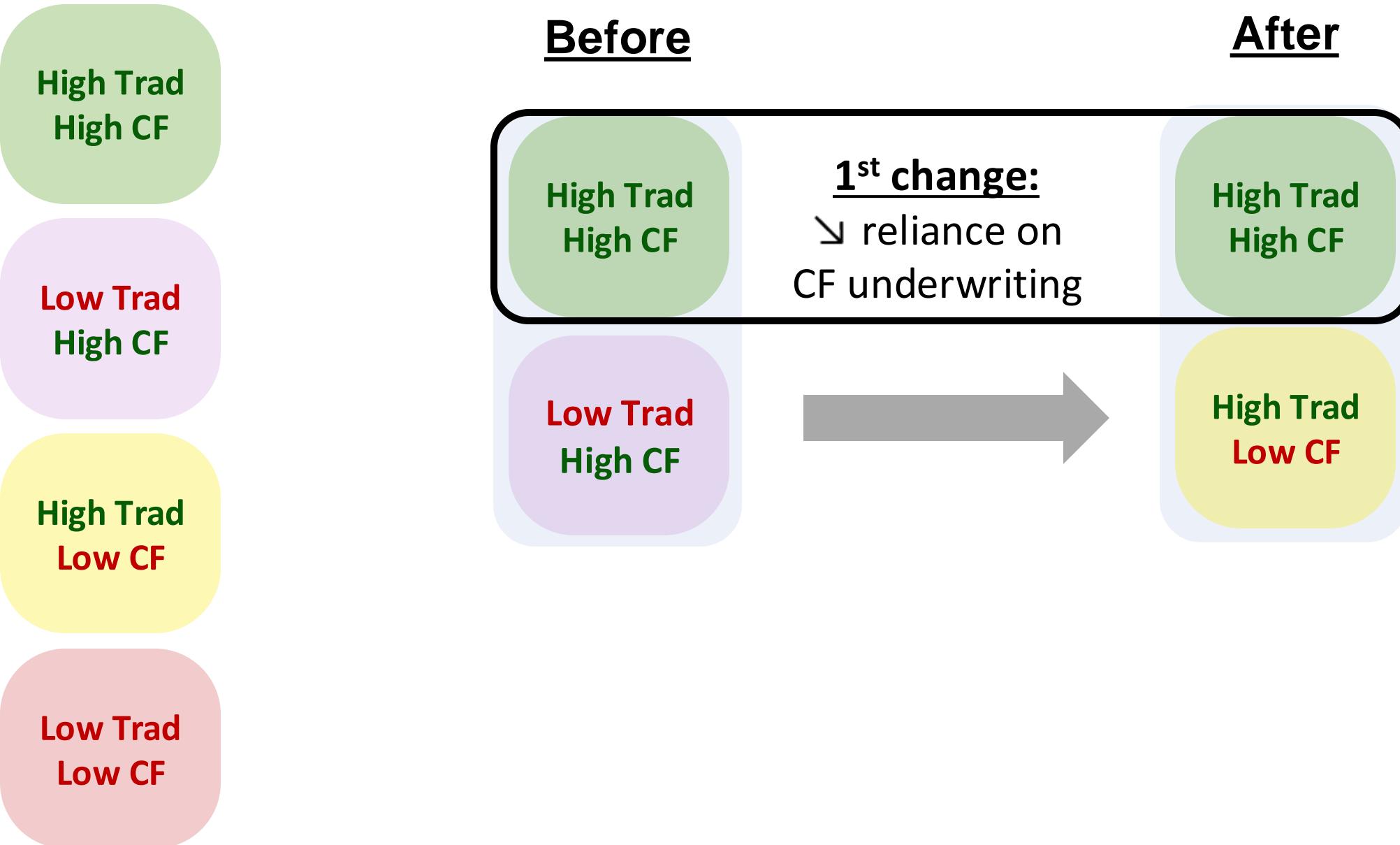
Careful (and convincing) discussion of selection in the paper!

My read: the lender changed screening thinking it would not adversely affect credit outcomes and was surprised by the \uparrow in charge-offs!

Consistent with this: reversed change after few months!

=> **Something else is happening!**

Channel 2: Change in behavior ?



Channel 2: Change in behavior ?



Unintended consequences of nudging

Unintended consequences of ~~nudging~~ cashflow underwriting

Unintended consequences of ~~nudging~~ cashflow underwriting

We generally think of cashflow underwriting as a superior screening technology

BUT can have unintended behavioral response:

Bank account linking for underwriting reduces frictions for auto-pay adoption!

**As much a contribution to nudging literature as to the
growing literature in fintech:**

Berg, Fustter, Puri '24 ; Bickle, He, Huang adn Parlatore '24

Screening technology can change choice architecture & behavior!

=> we might over-estimate the improvement in selection from fintech

Part III

Welfare Impact

Nudging in credit market

Growing literature has considerably improved understanding of the **direct & indirect treatment effect** of nudges in credit markets ...

Guttman-Kenney et al '24: no long-term impact on CC debt

Medina 2012: credit repayment text overdraft fees

Medina Grodzicki 2023: credit card nudge student loans

Nudging in credit market

Growing literature has considerably improved understanding of the **direct & indirect treatment effect** of nudges in credit markets ...

Guttman-Kenney et al '24: no long-term impact on CC debt

Medina 2012: credit repayment text overdraft fees

Medina Grodzicki 2023: credit card nudge student loans

... yet more outcomes relevant for **welfare** than we can (ever?) measure
(e.g., pawn shops, late bills, informal credit, ret. saving, labor productivity etc.)

Behavioral welfare analysis

- Apply the behavioral welfare framework of Choukhmane Palmer '24 (adapted from Bernheim, Taubinsky '18; Alcott, Taubinsky '24 ; Reck Seibold '24):

$$\max_{c_i, ret_i, liq_i} \quad u(c_i) + v_i(cc_i, r) + \beta_i V_i(-cc_i, a_i)$$

$$s.t. \quad c_i = c_i = y_i + cc_i - a_i - R^{cc}(cc_i) + R^a(a_i)$$

Behavioral welfare analysis

- Apply the behavioral welfare framework of Choukhmane Palmer '24 (adapted from Bernheim, Taubinsky '18; Alcott, Taubinsky '24 ; Reck Seibold '24):

$$\max_{c_i, ret_i, liq_i} u(c_i) + v_i(cc_i, r) + \beta_i V_i(-cc_i, a_i)$$

$$s.t. \quad c_i = c_i = y_i + cc_i - a_i - R^{cc}(cc_i) + R^a(a_i)$$

- Planner thinks each individual $p_i\%$ too impatient & gives no normative weight to anchoring utility

$$W(r) = \sum_i \omega_i [u(c_i(r)) + \cancel{v_i(cc_i, r)} + \beta_i (1 + p_i) V_i(-cc_i(r), a_i(r))] di + \mu \sum_i (R^{cc}(cc_i(r)) - R^a(a_i(r))) di$$

where ω_i are welfare weights, μ is marginal social value of financial profits and $\gamma_i = \frac{v_{cc}}{u'}$ captures the strength of anchoring

Behavioral welfare analysis

Abstracting from redistribution ($g_i = 1$):

$$\frac{dW(r)/dr}{\mu} = \int_i \left\{ p_i \underbrace{\left(-\frac{dc_i}{dr} \right)}_{\text{cons. resp.}} + (1 + p_i) \gamma_i \underbrace{\left(-\frac{dcc_i}{dr} \right)}_{\text{CC repayment resp.}} + \underbrace{\frac{dR^{cc}}{dr} - \frac{dR^a}{d}}_{\text{interest resp.}} \right\} di$$

Behavioral welfare analysis

Abstracting from redistribution ($g_i = 1$):

$$\frac{dW(r)/dr}{\mu} = \int_i \left\{ \underbrace{p_i \left(-\frac{dc_i}{dr} \right)}_{\text{cons. resp.}} + (1 + p_i) \underbrace{\gamma_i \left(-\frac{dcc_i}{dr} \right)}_{\text{CC repayment resp.}} + \underbrace{\frac{dR^{cc}}{dr} - \frac{dR^a}{d}}_{\text{interest resp.}} \right\} di$$

- **Consumption response:** did the policy lead the most **present biased individuals** to cut their spending? $\text{cov} \left(p_i, -\frac{dc_i}{dr} \right) > 0$

Behavioral welfare analysis

Abstracting from redistribution ($g_i = 1$):

$$\frac{dW(r)/dr}{\mu} = \int_i \left\{ p_i \underbrace{\left(-\frac{dc_i}{dr} \right)}_{\text{cons. resp.}} + (1 + p_i) \underbrace{\gamma_i \left(-\frac{dcc_i}{dr} \right)}_{\text{CC repayment resp.}} + \underbrace{\frac{dR^{cc}}{dr} - \frac{dR^a}{d}}_{\text{interest resp.}} \right\} di$$

- Consumption response: did the policy lead the most present biased individuals to cut their spending? $\text{cov} \left(p_i, -\frac{dc_i}{dr} \right) > 0$
- **CC borrowing response:** did the policy reduce anchoring (e.g. \uparrow CC borrowing for those anchored $<$ optimal) those **most prone to anchoring**? $\text{cov} \left(\gamma_i, \frac{dcc_i}{dr} \right) > 0$

Behavioral welfare analysis

Abstracting from redistribution ($g_i = 1$):

$$\frac{dW(r)/dr}{\mu} = \int_i \left\{ p_i \underbrace{\left(-\frac{dc_i}{dr} \right)}_{\text{cons. resp.}} + (1 + p_i) \gamma_i \underbrace{\left(-\frac{dcc_i}{dr} \right)}_{\text{CC repayment resp.}} + \underbrace{\frac{dR^{cc}}{dr} - \frac{dR^a}{d}}_{\text{interest resp.}} \right\} di$$

- Consumption response: did the policy lead the most present biased individuals to cut their spending? $\text{cov} \left(p_i, -\frac{dc_i}{dr} \right) > 0$
- CC borrowing response: did the policy reduce anchoring (e.g. \uparrow CC borrowing for those anchored $<$ optimal) those most prone to anchoring? $\text{cov} \left(\gamma_i, \frac{dcc_i}{dr} \right) > 0$
- **Net interest payments:** did the policy reduce net interest payments?
 $\mathbb{E} \left(\frac{dR^{cc}}{dr} - \frac{dR^a}{d} \right) < 0$